001     480968
005     20250724151616.0
024 7 _ |a 10.1039/D2TA00078D
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-04108
|2 datacite_doi
024 7 _ |a altmetric:125463773
|2 altmetric
024 7 _ |a WOS:000779385800001
|2 WOS
024 7 _ |a openalex:W4220880692
|2 openalex
037 _ _ |a PUBDB-2022-04108
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Fang, Yuan
|b 0
245 _ _ |a Lithium insertion in hard carbon as observed by $^7$Li NMR and XRD. The local and mesoscopic order and their relevance for lithium storage and diffusion
260 _ _ |a London ˜[u.a.]œ
|c 2022
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1659517095_20238
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We investigate hard carbon fibers in different states of charge by a combination of $^7$Li-NMR and 2D-XRD. In particular, we record the quadrupole-split $^7$Li-NMR spectra and $^7$Li longitudinal relaxation over a wide temperature range, and determine lithium self-diffusion both parallel and perpendicular to the fiber axis. Recording the temperature dependence permits us to interpret the presence of motional averaging of spin couplings for mobile Li. The joint analysis shows that at low Li content, Li occupies sites that lack ordered coordination and delocalized electrons and are collected in disordered spatial domains. Upon increasing the Li content, ordered sites collected in ordered domains become populated. Both disordered and ordered domains have a high inherent heterogeneity with a typical spatial extension of a few nanometers. The disordered domains exhibit a continuous topology that permits unhindered diffusion within it. At high Li content we also observe the presence of very small (∼nm) particles of metallic lithium. The joint analysis of XRD in combination with diffusion anisotropy, and anisotropy from the $^7$Li-NMR spectrum (with samples oriented differently with regard to the applied magnetic field), shows that the mesoscopic structure is made by ordered domains arranged in a cylindrically rolled-up manner with the mesoscopic axis parallel to the fiber axis.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20210412 EC (I-20210412-EC)
|0 G:(DE-H253)I-20210412-EC
|c I-20210412-EC
|x 1
536 _ _ |a FS-Proposal: I-20190372 EC (I-20190372-EC)
|0 G:(DE-H253)I-20190372-EC
|c I-20190372-EC
|x 2
536 _ _ |a FS-Proposal: I-20190548 EC (I-20190548-EC)
|0 G:(DE-H253)I-20190548-EC
|c I-20190548-EC
|x 3
536 _ _ |a SWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)
|0 G:(DE-HGF)2020_Join2-SWEDEN-DESY
|c 2020_Join2-SWEDEN-DESY
|x 4
588 _ _ |a Dataset connected to DataCite
693 _ _ |a PETRA III
|f PETRA Beamline P03
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P03-20150101
|6 EXP:(DE-H253)P-P03-20150101
|x 0
700 1 _ |a Peuvot, Kevin
|0 P:(DE-H253)PIP1090762
|b 1
700 1 _ |a Gratrex, Alice
|0 P:(DE-H253)PIP1083991
|b 2
700 1 _ |a Morozov, Evgeny V.
|b 3
700 1 _ |a Hagberg, Johan
|0 P:(DE-H253)PIP1032169
|b 4
700 1 _ |a Lindbergh, Göran
|0 P:(DE-H253)PIP1087875
|b 5
700 1 _ |a Furó, István
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1039/D2TA00078D
|g Vol. 10, no. 18, p. 10069 - 10082
|0 PERI:(DE-600)2702232-8
|n 18
|p 10069 - 10082
|t Journal of materials chemistry / A
|v 10
|y 2022
|x 2050-7488
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/480968/files/Paper.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/480968/files/Paper.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:480968
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1090762
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1083991
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1032169
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1087875
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER CHEM A : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2019
|d 2021-01-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 1 _ |0 I:(DE-H253)PETRA_III-20150811
|k PETRA III
|l PETRA III
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)PETRA_III-20150811
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21