001     480811
005     20250715175948.0
024 7 _ |a 10.1021/acsami.1c22029
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-03984
|2 datacite_doi
024 7 _ |a 35764295
|2 pmid
024 7 _ |a WOS:000822496200001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4283688006
037 _ _ |a PUBDB-2022-03984
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Erb, Denise
|0 P:(DE-H253)PIP1008054
|b 0
|e Corresponding author
245 _ _ |a Real-Time Observation of Temperature-Induced Surface Nanofaceting in M-Plane $\alpha$-Al$_2$O$_3$
260 _ _ |a Washington, DC
|c 2022
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666262036_1734
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The spontaneous crystal surface reconstruction of M-plane $\alpha$-Al$_2$O$_3$ is employed for nanopatterning and nanofabrication in various fields of research including, among others, magnetism, superconductivity, and optoelectronics. In this reconstruction process the crystalline surface transforms from a planar morphology to one with a nanoscale ripple patterning. However, the high sample temperature required to induce surface reconstruction made $in$ $situ$ studies of the process seem unfeasible. The kinetics of ripple pattern formation therefore remained uncertain, and thus production of templates for nanofabrication could not advance beyond a trial-and-error stage. We present an approach combining $in$ $situ$ real-time grazing incidence small-angle X-ray scattering experiments (GISAXS) with model-based analysis and with $ex$ $situ$ atomic force microscopy (AFM) to observe this morphological transition in great detail. Our approach provides time-resolved information about all relevant morphological parameters required to trace the surface topography on the nanometer scale during reconstruction, i.e., the time dependence of the pattern wavelength, the ripple length, width, and height, and thus their facet angles. It offers a comprehensive picture of this process exemplified by a M-plane $\alpha$-Al$_2$O$_3$ surface annealed at 1325 °C for 930 min. Fitting the model parameters to the experimental GISAXS data revealed a Johnson–Mehl–Avrami–Kolmogorov type of behavior for the pattern wavelength and a predominantly linear time dependence of the other parameters. In this case the reconstruction resulted in a crystalline surface fully patterned with asymmetric ripple-shaped nanostructures of 75 nm periodicity, 15 nm in height, and 630 nm in length. By elucidating the time dependence of these morphological parameters, this study shows a powerful way to significantly advance the predictability of annealing outcome and thus to efficiently customize nanopatterned $\alpha$-Al$_2$O$_3$ templates for improved nanofabrication routines.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a DORIS III
|f DORIS Beamline BW4
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-BW4-20150101
|6 EXP:(DE-H253)D-BW4-20150101
|x 0
693 _ _ |a PETRA III
|f PETRA Beamline P03
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P03-20150101
|6 EXP:(DE-H253)P-P03-20150101
|x 1
700 1 _ |a Perlich, Jan
|0 P:(DE-H253)PIP1007827
|b 1
700 1 _ |a Roth, Stephan
|0 P:(DE-H253)PIP1003299
|b 2
|u desy
700 1 _ |a Röhlsberger, Ralf
|0 P:(DE-H253)PIP1000401
|b 3
700 1 _ |a Schlage, Kai
|0 P:(DE-H253)PIP1005914
|b 4
773 _ _ |a 10.1021/acsami.1c22029
|g Vol. 14, no. 27, p. 31373 - 31384
|0 PERI:(DE-600)2467494-1
|n 27
|p 31373 - 31384
|t ACS applied materials & interfaces
|v 14
|y 2022
|x 1944-8244
856 4 _ |u https://bib-pubdb1.desy.de/record/480811/files/acsami.1c22029.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/480811/files/acsami.1c22029.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:480811
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1008054
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1007827
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1003299
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1003299
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1000401
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1000401
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1000401
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1005914
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1005914
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-D-20190712
|k FS-PET-D
|l Experimentebetreuung PETRA III
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 _ _ |a I:(DE-H253)FS-PET-D-20190712
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21