000480811 001__ 480811
000480811 005__ 20250715175948.0
000480811 0247_ $$2doi$$a10.1021/acsami.1c22029
000480811 0247_ $$2ISSN$$a1944-8244
000480811 0247_ $$2ISSN$$a1944-8252
000480811 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-03984
000480811 0247_ $$2pmid$$a35764295
000480811 0247_ $$2WOS$$aWOS:000822496200001
000480811 0247_ $$2openalex$$aopenalex:W4283688006
000480811 037__ $$aPUBDB-2022-03984
000480811 041__ $$aEnglish
000480811 082__ $$a600
000480811 1001_ $$0P:(DE-H253)PIP1008054$$aErb, Denise$$b0$$eCorresponding author
000480811 245__ $$aReal-Time Observation of Temperature-Induced Surface Nanofaceting in M-Plane $\alpha$-Al$_2$O$_3$
000480811 260__ $$aWashington, DC$$bSoc.$$c2022
000480811 3367_ $$2DRIVER$$aarticle
000480811 3367_ $$2DataCite$$aOutput Types/Journal article
000480811 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666262036_1734
000480811 3367_ $$2BibTeX$$aARTICLE
000480811 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000480811 3367_ $$00$$2EndNote$$aJournal Article
000480811 520__ $$aThe spontaneous crystal surface reconstruction of M-plane $\alpha$-Al$_2$O$_3$ is employed for nanopatterning and nanofabrication in various fields of research including, among others, magnetism, superconductivity, and optoelectronics. In this reconstruction process the crystalline surface transforms from a planar morphology to one with a nanoscale ripple patterning. However, the high sample temperature required to induce surface reconstruction made $in$ $situ$ studies of the process seem unfeasible. The kinetics of ripple pattern formation therefore remained uncertain, and thus production of templates for nanofabrication could not advance beyond a trial-and-error stage. We present an approach combining $in$ $situ$ real-time grazing incidence small-angle X-ray scattering experiments (GISAXS) with model-based analysis and with $ex$ $situ$ atomic force microscopy (AFM) to observe this morphological transition in great detail. Our approach provides time-resolved information about all relevant morphological parameters required to trace the surface topography on the nanometer scale during reconstruction, i.e., the time dependence of the pattern wavelength, the ripple length, width, and height, and thus their facet angles. It offers a comprehensive picture of this process exemplified by a M-plane $\alpha$-Al$_2$O$_3$ surface annealed at 1325 °C for 930 min. Fitting the model parameters to the experimental GISAXS data revealed a Johnson–Mehl–Avrami–Kolmogorov type of behavior for the pattern wavelength and a predominantly linear time dependence of the other parameters. In this case the reconstruction resulted in a crystalline surface fully patterned with asymmetric ripple-shaped nanostructures of 75 nm periodicity, 15 nm in height, and 630 nm in length. By elucidating the time dependence of these morphological parameters, this study shows a powerful way to significantly advance the predictability of annealing outcome and thus to efficiently customize nanopatterned $\alpha$-Al$_2$O$_3$ templates for improved nanofabrication routines.
000480811 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000480811 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000480811 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000480811 693__ $$0EXP:(DE-H253)D-BW4-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-BW4-20150101$$aDORIS III$$fDORIS Beamline BW4$$x0
000480811 693__ $$0EXP:(DE-H253)P-P03-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P03-20150101$$aPETRA III$$fPETRA Beamline P03$$x1
000480811 7001_ $$0P:(DE-H253)PIP1007827$$aPerlich, Jan$$b1
000480811 7001_ $$0P:(DE-H253)PIP1003299$$aRoth, Stephan$$b2$$udesy
000480811 7001_ $$0P:(DE-H253)PIP1000401$$aRöhlsberger, Ralf$$b3
000480811 7001_ $$0P:(DE-H253)PIP1005914$$aSchlage, Kai$$b4
000480811 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.1c22029$$gVol. 14, no. 27, p. 31373 - 31384$$n27$$p31373 - 31384$$tACS applied materials & interfaces$$v14$$x1944-8244$$y2022
000480811 8564_ $$uhttps://bib-pubdb1.desy.de/record/480811/files/acsami.1c22029.pdf$$yOpenAccess
000480811 8564_ $$uhttps://bib-pubdb1.desy.de/record/480811/files/acsami.1c22029.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000480811 909CO $$ooai:bib-pubdb1.desy.de:480811$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000480811 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008054$$aExternal Institute$$b0$$kExtern
000480811 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007827$$aExternal Institute$$b1$$kExtern
000480811 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003299$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000480811 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1003299$$aEuropean XFEL$$b2$$kXFEL.EU
000480811 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1000401$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000480811 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1000401$$aEuropean XFEL$$b3$$kXFEL.EU
000480811 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1000401$$aExternal Institute$$b3$$kExtern
000480811 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005914$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000480811 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1005914$$aEuropean XFEL$$b4$$kXFEL.EU
000480811 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000480811 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000480811 9141_ $$y2022
000480811 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000480811 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000480811 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000480811 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000480811 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000480811 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2019$$d2021-01-30
000480811 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000480811 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000480811 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000480811 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2019$$d2021-01-30
000480811 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000480811 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000480811 9201_ $$0I:(DE-H253)FS-PS-20131107$$kFS-PS$$lFS-Photon Science$$x0
000480811 9201_ $$0I:(DE-H253)FS-PET-D-20190712$$kFS-PET-D$$lExperimentebetreuung PETRA III$$x1
000480811 980__ $$ajournal
000480811 980__ $$aVDB
000480811 980__ $$aI:(DE-H253)FS-PS-20131107
000480811 980__ $$aI:(DE-H253)FS-PET-D-20190712
000480811 980__ $$aUNRESTRICTED
000480811 9801_ $$aFullTexts