% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Bieringer:480166,
author = {Bieringer, S. and Butter, A. and Diefenbacher, S. and Eren,
E. and Gaede, F. and Hundhausen, D. and Kasieczka, G. and
Nachman, B. and Plehn, T. and Trabs, M.},
title = {{C}alomplification — the power of generative calorimeter
models},
journal = {Journal of Instrumentation},
volume = {17},
number = {09},
issn = {1748-0221},
address = {London},
publisher = {Inst. of Physics},
reportid = {PUBDB-2022-03543, DESY-22-111. arXiv:2202.07352},
pages = {P09028},
year = {2022},
note = {17 pages, 10 figures},
abstract = {Motivated by the high computational costs of classical
simulations, machine-learned generative models can be
extremely useful in particle physics and elsewhere. They
become especially attractive when surrogate models can
efficiently learn the underlying distribution, such that a
generated sample outperforms a training sample of limited
size. This kind of GANplification has been observed for
simple Gaussian models. We show the same effect for a
physics simulation, specifically photon showers in an
electromagnetic calorimeter.},
keywords = {photon: showers (INSPIRE) / calorimeter: electromagnetic
(INSPIRE) / costs (INSPIRE) / Detector modelling and
simulations I (interaction of radiation with matter
(autogen) / interaction of photons with matter (autogen) /
interaction of hadrons with matter (autogen) / etc)
(autogen) / Simulation methods and programs (autogen) /
Analysis and statistical methods (autogen) / Calorimeter
methods (autogen)},
cin = {FTX},
ddc = {610},
cid = {I:(DE-H253)FTX-20210408},
pnm = {611 - Fundamental Particles and Forces (POF4-611) /
HIDSS-0002 - DASHH: Data Science in Hamburg - Helmholtz
Graduate School for the Structure of Matter
$(2019_IVF-HIDSS-0002)$ / DFG project 396021762 - TRR 257:
Phänomenologische Elementarteilchenphysik nach der
Higgs-Entdeckung (396021762) / DFG project 390900948 - EXC
2181: STRUKTUREN: Emergenz in Natur, Mathematik und
komplexen Daten (390900948) / DFG project 390833306 - EXC
2121: Quantum Universe (390833306)},
pid = {G:(DE-HGF)POF4-611 / $G:(DE-HGF)2019_IVF-HIDSS-0002$ /
G:(GEPRIS)396021762 / G:(GEPRIS)390900948 /
G:(GEPRIS)390833306},
experiment = {EXP:(DE-MLZ)NOSPEC-20140101},
typ = {PUB:(DE-HGF)16},
eprint = {2202.07352},
howpublished = {arXiv:2202.07352},
archivePrefix = {arXiv},
SLACcitation = {$\%\%CITATION$ = $arXiv:2202.07352;\%\%$},
UT = {WOS:000888844600007},
doi = {10.1088/1748-0221/17/09/P09028},
url = {https://bib-pubdb1.desy.de/record/480166},
}