000480166 001__ 480166 000480166 005__ 20250715175410.0 000480166 0247_ $$2doi$$a10.1088/1748-0221/17/09/P09028 000480166 0247_ $$2INSPIRETeX$$aBieringer:2022cbs 000480166 0247_ $$2inspire$$ainspire:2032657 000480166 0247_ $$2arXiv$$aarXiv:2202.07352 000480166 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-03543 000480166 0247_ $$2altmetric$$aaltmetric:123134881 000480166 0247_ $$2WOS$$aWOS:000888844600007 000480166 0247_ $$2openalex$$aopenalex:W4296821779 000480166 037__ $$aPUBDB-2022-03543 000480166 041__ $$aEnglish 000480166 082__ $$a610 000480166 088__ $$2DESY$$aDESY-22-111 000480166 088__ $$2arXiv$$aarXiv:2202.07352 000480166 1001_ $$0P:(DE-H253)PIP1096755$$aBieringer, S.$$b0 000480166 245__ $$aCalomplification — the power of generative calorimeter models 000480166 260__ $$aLondon$$bInst. of Physics$$c2022 000480166 3367_ $$2DRIVER$$aarticle 000480166 3367_ $$2DataCite$$aOutput Types/Journal article 000480166 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1713282054_2951524 000480166 3367_ $$2BibTeX$$aARTICLE 000480166 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000480166 3367_ $$00$$2EndNote$$aJournal Article 000480166 500__ $$a17 pages, 10 figures 000480166 520__ $$aMotivated by the high computational costs of classical simulations, machine-learned generative models can be extremely useful in particle physics and elsewhere. They become especially attractive when surrogate models can efficiently learn the underlying distribution, such that a generated sample outperforms a training sample of limited size. This kind of GANplification has been observed for simple Gaussian models. We show the same effect for a physics simulation, specifically photon showers in an electromagnetic calorimeter. 000480166 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0 000480166 536__ $$0G:(DE-HGF)2019_IVF-HIDSS-0002$$aHIDSS-0002 - DASHH: Data Science in Hamburg - Helmholtz Graduate School for the Structure of Matter (2019_IVF-HIDSS-0002)$$c2019_IVF-HIDSS-0002$$x1 000480166 536__ $$0G:(GEPRIS)396021762$$aDFG project 396021762 - TRR 257: Phänomenologische Elementarteilchenphysik nach der Higgs-Entdeckung (396021762)$$c396021762$$x2 000480166 536__ $$0G:(GEPRIS)390900948$$aDFG project 390900948 - EXC 2181: STRUKTUREN: Emergenz in Natur, Mathematik und komplexen Daten (390900948)$$c390900948$$x3 000480166 536__ $$0G:(GEPRIS)390833306$$aDFG project 390833306 - EXC 2121: Quantum Universe (390833306)$$c390833306$$x4 000480166 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de 000480166 650_7 $$2INSPIRE$$aphoton: showers 000480166 650_7 $$2INSPIRE$$acalorimeter: electromagnetic 000480166 650_7 $$2INSPIRE$$acosts 000480166 650_7 $$2autogen$$aDetector modelling and simulations I (interaction of radiation with matter 000480166 650_7 $$2autogen$$ainteraction of photons with matter 000480166 650_7 $$2autogen$$ainteraction of hadrons with matter 000480166 650_7 $$2autogen$$aetc) 000480166 650_7 $$2autogen$$aSimulation methods and programs 000480166 650_7 $$2autogen$$aAnalysis and statistical methods 000480166 650_7 $$2autogen$$aCalorimeter methods 000480166 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000480166 7001_ $$0P:(DE-H253)PIP1030245$$aButter, A.$$b1 000480166 7001_ $$0P:(DE-H253)PIP1090777$$aDiefenbacher, S.$$b2 000480166 7001_ $$0P:(DE-H253)PIP1020256$$aEren, E.$$b3$$eCorresponding author 000480166 7001_ $$0P:(DE-H253)PIP1002530$$aGaede, F.$$b4 000480166 7001_ $$0P:(DE-H253)PIP1093974$$aHundhausen, D.$$b5 000480166 7001_ $$0P:(DE-H253)PIP1081743$$aKasieczka, G.$$b6 000480166 7001_ $$0P:(DE-H253)PIP1095640$$aNachman, B.$$b7 000480166 7001_ $$0P:(DE-HGF)0$$aPlehn, T.$$b8 000480166 7001_ $$0P:(DE-HGF)0$$aTrabs, M.$$b9 000480166 773__ $$0PERI:(DE-600)2235672-1$$a10.1088/1748-0221/17/09/P09028$$gVol. 17, no. 09, p. P09028 -$$n09$$pP09028$$tJournal of Instrumentation$$v17$$x1748-0221$$y2022 000480166 7870_ $$0PUBDB-2022-00968$$aBieringer, Sebastian Guido et.al.$$d2022$$iIsParent$$rDESY-22-031 ; arXiv:2202.07352$$tCalomplification - The Power of Generative Calorimeter Models 000480166 8564_ $$uhttps://bib-pubdb1.desy.de/record/480166/files/HTML-Approval_of_scientific_publication.html 000480166 8564_ $$uhttps://bib-pubdb1.desy.de/record/480166/files/PDF-Approval_of_scientific_publication.pdf 000480166 8564_ $$uhttps://bib-pubdb1.desy.de/record/480166/files/Bieringer_2022_J._Inst._17_P09028.pdf$$yOpenAccess 000480166 8564_ $$uhttps://bib-pubdb1.desy.de/record/480166/files/JINST_011P_0722.pdf$$yOpenAccess 000480166 8564_ $$uhttps://bib-pubdb1.desy.de/record/480166/files/Bieringer_2022_J._Inst._17_P09028.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000480166 8564_ $$uhttps://bib-pubdb1.desy.de/record/480166/files/JINST_011P_0722.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000480166 8767_ $$92022$$aTODO$$d2023-02-13$$eHybrid-OA$$jPublish and Read$$lIOP$$zQ3-2022 000480166 909CO $$ooai:bib-pubdb1.desy.de:480166$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire 000480166 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096755$$aExternal Institute$$b0$$kExtern 000480166 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1030245$$aExternal Institute$$b1$$kExtern 000480166 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090777$$aExternal Institute$$b2$$kExtern 000480166 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1020256$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY 000480166 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002530$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY 000480166 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093974$$aExternal Institute$$b5$$kExtern 000480166 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081743$$aExternal Institute$$b6$$kExtern 000480166 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095640$$aExternal Institute$$b7$$kExtern 000480166 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0 000480166 9141_ $$y2022 000480166 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000480166 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000480166 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000480166 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022 000480166 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27 000480166 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27 000480166 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000480166 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ INSTRUM : 2019$$d2021-01-27 000480166 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27 000480166 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27 000480166 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27 000480166 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000480166 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27 000480166 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27 000480166 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger 000480166 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27 000480166 9201_ $$0I:(DE-H253)FTX-20210408$$kFTX$$lTechnol. zukünft. Teilchenph. Experim.$$x0 000480166 980__ $$ajournal 000480166 980__ $$aVDB 000480166 980__ $$aI:(DE-H253)FTX-20210408 000480166 980__ $$aAPC 000480166 980__ $$aUNRESTRICTED 000480166 9801_ $$aAPC 000480166 9801_ $$aFullTexts