000479033 001__ 479033 000479033 005__ 20250715175555.0 000479033 0247_ $$2doi$$a10.1038/s41566-022-01121-9 000479033 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-02889 000479033 0247_ $$2altmetric$$aaltmetric:140499070 000479033 0247_ $$2WOS$$aWOS:000900792200003 000479033 0247_ $$2openalex$$aopenalex:W4313430673 000479033 037__ $$aPUBDB-2022-02889 000479033 041__ $$aEnglish 000479033 082__ $$a530 000479033 1001_ $$0P:(DE-H253)PIP1084417$$aBalla, Prannay$$b0 000479033 245__ $$aUltrafast serrodyne optical frequency translator 000479033 260__ $$aLondon [u.a.]$$bNature Publ. Group$$c2022 000479033 3367_ $$2DRIVER$$aarticle 000479033 3367_ $$2DataCite$$aOutput Types/Journal article 000479033 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1701260952_513038 000479033 3367_ $$2BibTeX$$aARTICLE 000479033 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000479033 3367_ $$00$$2EndNote$$aJournal Article 000479033 500__ $$aCorresponding author: C. M. Heyl 000479033 520__ $$aThe serrodyne principle enables an electromagnetic signal to be frequency shifted by applying a linear phase ramp in the time domain. This phenomenon has been exploited to frequency shift signals in the radiofrequency, microwave and optical regions of the electromagnetic spectrum over ranges of up to a few gigahertz, for example, to analyse the Doppler shift of radiofrequency signals for noise suppression and frequency stabilization. Here we employ this principle to shift the centre frequency of high-power femtosecond laser pulses over a range of several terahertz with the help of a nonlinear multi-pass cell. We demonstrate our method experimentally by shifting the central wavelength of a state-of-the-art 75 W frequency comb laser from 1,030 nm to 1,060 nm and to 1,000 nm. Furthermore, we experimentally show that this wavelength-shifting technique supports coherence characteristics at the few hertz-level while improving the temporal pulse quality. The technique is generally applicable to wide parameter ranges and different laser systems, enabling efficient wavelength conversion of high-power lasers to spectral regions beyond the gain bandwidth of available laser platforms. 000479033 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0 000479033 536__ $$0G:(DE-HGF)POF4-6G2$$a6G2 - FLASH (DESY) (POF4-6G2)$$cPOF4-6G2$$fPOF IV$$x1 000479033 693__ $$0EXP:(DE-H253)FLASH2020p-20221201$$1EXP:(DE-H253)FLASHII-20150901$$5EXP:(DE-H253)FLASH2020p-20221201$$aFLASH II$$eFLASH 2020+ Project$$x0 000479033 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x1 000479033 7001_ $$0P:(DE-H253)PIP1088102$$aTuennermann, Henrik$$b1$$udesy 000479033 7001_ $$0P:(DE-H253)PIP1082032$$aSalman, Haydar Sarper$$b2 000479033 7001_ $$0P:(DE-H253)PIP1091459$$aFan, Mingqi$$b3$$udesy 000479033 7001_ $$0P:(DE-H253)PIP1032739$$aAlisauskas, Skirmantas$$b4$$udesy 000479033 7001_ $$0P:(DE-H253)PIP1018794$$aHartl, Ingmar$$b5$$udesy 000479033 7001_ $$0P:(DE-H253)PIP1082227$$aHeyl, Christoph$$b6$$eCorresponding author$$udesy 000479033 773__ $$0PERI:(DE-600)2264673-5$$a10.1038/s41566-022-01121-9$$p187 – 192$$tNature photonics$$v17$$x1749-4885$$y2022 000479033 8564_ $$uhttps://doi.org/10.1038/s41566-022-01121-9 000479033 8564_ $$uhttps://bib-pubdb1.desy.de/record/479033/files/HTML-Approval_of_scientific_publication.html 000479033 8564_ $$uhttps://bib-pubdb1.desy.de/record/479033/files/PDF-Approval_of_scientific_publication.pdf 000479033 8564_ $$uhttps://bib-pubdb1.desy.de/record/479033/files/Scan%2029.11.2022%2C%2008-31.pdf 000479033 8564_ $$uhttps://bib-pubdb1.desy.de/record/479033/files/Scan%2029.11.2022%2C%2008-31.pdf?subformat=pdfa$$xpdfa 000479033 8564_ $$uhttps://bib-pubdb1.desy.de/record/479033/files/manuscript.pdf$$yOpenAccess 000479033 8564_ $$uhttps://bib-pubdb1.desy.de/record/479033/files/manuscript.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000479033 8767_ $$92022$$aTODO$$d2022-11-29$$eHybrid-OA$$jPublish and Read$$lSpringerNature$$zNature Portfolio: TA-Vereinbarung, Corresponding author C. Heyl 000479033 909CO $$ooai:bib-pubdb1.desy.de:479033$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire$$qOpenAPC_DEAL 000479033 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1084417$$aExternal Institute$$b0$$kExtern 000479033 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1088102$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY 000479033 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1082032$$aExternal Institute$$b2$$kExtern 000479033 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1091459$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY 000479033 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1032739$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY 000479033 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1018794$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY 000479033 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1082227$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY 000479033 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0 000479033 9131_ $$0G:(DE-HGF)POF4-6G2$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFLASH (DESY)$$x1 000479033 9141_ $$y2022 000479033 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000479033 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000479033 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000479033 915pc $$0PC:(DE-HGF)0114$$2APC$$aGerman academic consortium, administered by Max Planck Digital Library: Springer Nature 2021 000479033 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29 000479033 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29 000479033 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-29 000479033 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000479033 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29 000479033 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29 000479033 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNAT PHOTONICS : 2019$$d2021-01-29 000479033 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29 000479033 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000479033 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29 000479033 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PHOTONICS : 2019$$d2021-01-29 000479033 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29 000479033 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29 000479033 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger 000479033 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29 000479033 9201_ $$0I:(DE-H253)FS-LA-20130416$$kFS-LA$$lLaser Forschung und Entwicklung$$x0 000479033 9201_ $$0I:(DE-H253)HI_Jena-20120814$$kHI Jena$$lexterne Institute im Bereich Photon Science$$x1 000479033 980__ $$ajournal 000479033 980__ $$aVDB 000479033 980__ $$aI:(DE-H253)FS-LA-20130416 000479033 980__ $$aI:(DE-H253)HI_Jena-20120814 000479033 980__ $$aAPC 000479033 980__ $$aUNRESTRICTED 000479033 9801_ $$aAPC 000479033 9801_ $$aFullTexts