001     479017
005     20250715175751.0
024 7 _ |a 10.1364/OME.460445
|2 doi
024 7 _ |a 10.3204/PUBDB-2022-02875
|2 datacite_doi
024 7 _ |a WOS:000830078800010
|2 WOS
024 7 _ |2 openalex
|a openalex:W4281773052
037 _ _ |a PUBDB-2022-02875
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Demirbas, Uemit
|0 P:(DE-H253)PIP1032520
|b 0
|e Corresponding author
245 _ _ |a Advantages of YLF host over YAG in power scaling at cryogenic temperatures: direct comparison of Yb-doped systems
260 _ _ |a Washington, DC
|c 2022
|b OSA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718794594_3797938
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We have investigated the cryogenic performance of Yb:YAG and Yb:YLF crystals in rod-geometry to understand the pros and cons of each material for the development of ultrafast lasers and amplifier systems. We have performed detailed spectroscopic (absorption, emission, lifetime), temperature, lasing, and thermal-lens measurements with Yb:YLF and Yb:YAG crystals under almost identical conditions. Our analysis has shown that despite the higher thermal conductivity of Yb:YAG, due to its smaller quantum defect, the peak/average temperatures reached under similar pumping conditions is lower in Yb:YLF crystals. Moreover, since the YLF host has a negative thermo-optic coefficient, that balances other positive contributions to thermal lensing, overall Yb:YLF rods possess a much weaker thermal lens than Yb:YAG under similar conditions. As a result of these benefits, we have shown that Yb:YLF rods perform better than Yb:YAG in cryogenic lasing experiments in terms of attainable power performance and laser output beam quality. In terms of gain per pass, the Yb:YAG medium is superior, however, the gain bandwidth is much broader in Yb:YLF systems that make it more suitable for ultrafast pulse laser/amplifier development. We have further shown that, the asymmetric thermal lens behavior of Yb:YLF favors laser operation in E//c axis over E//a axis. The comparison in this study has been performed in rod geometry and for Yb-doping, however, we believe that, to first order, the discussion could be extended to YAG/YLF laser systems doped with other ions (Pr, Nd, Er, Tm, Ho) and to other lasing geometries such as slab and thin-disk.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a DFG project 390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)
|0 G:(GEPRIS)390715994
|c 390715994
|x 1
536 _ _ |a AXSIS - Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy (609920)
|0 G:(EU-Grant)609920
|c 609920
|f ERC-2013-SyG
|x 2
536 _ _ |a DFG project 194651731 - EXC 1074: Hamburger Zentrum für ultraschnelle Beobachtung (CUI): Struktur, Dynamik und Kontrolle von Materie auf atomarer Skala (194651731)
|0 G:(GEPRIS)194651731
|c 194651731
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a SINBAD
|e AXSIS: Frontiers in Attosecond X-ray Science, Imaging and Spectroscopy
|1 EXP:(DE-H253)SINBAD-20200101
|0 EXP:(DE-H253)AXSIS-20200101
|5 EXP:(DE-H253)AXSIS-20200101
|x 0
693 _ _ |0 EXP:(DE-H253)CFEL-Exp-20150101
|5 EXP:(DE-H253)CFEL-Exp-20150101
|e Experiments at CFEL
|x 1
700 1 _ |a Kellert, Martin
|0 P:(DE-H253)PIP1015067
|b 1
700 1 _ |a Thesinga, Jelto
|0 P:(DE-H253)PIP1029186
|b 2
700 1 _ |a Reuter, Simon
|0 P:(DE-H253)PIP1080454
|b 3
700 1 _ |a Kärtner, Franz
|0 P:(DE-H253)PIP1013198
|b 4
700 1 _ |a Pergament, Mikhail
|0 P:(DE-H253)PIP1014672
|b 5
773 _ _ |a 10.1364/OME.460445
|g Vol. 12, no. 7, p. 2508 -
|0 PERI:(DE-600)2619914-2
|n 7
|p 2508 - 2528
|t Optical materials express
|v 12
|y 2022
|x 2159-3930
856 4 _ |u https://opg.optica.org/ome/fulltext.cfm?uri=ome-12-7-2508
856 4 _ |u https://bib-pubdb1.desy.de/record/479017/files/Admin-Demirbas.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/479017/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/479017/files/Internal%20review%20request%20for%20YLF%20versus%20YAG%20host%20manuscript.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/479017/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/479017/files/Admin-Demirbas.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/479017/files/Internal%20review%20request%20for%20YLF%20versus%20YAG%20host%20manuscript.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/479017/files/2022_June_8_YLF_vs_YAG_mansucript_ver_23.doc
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://bib-pubdb1.desy.de/record/479017/files/2022_June_8_YLF_vs_YAG_mansucript_ver_23.docx
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://bib-pubdb1.desy.de/record/479017/files/2022_June_8_YLF_vs_YAG_mansucript_ver_23.odt
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://bib-pubdb1.desy.de/record/479017/files/2022_June_8_YLF_vs_YAG_mansucript_ver_23.pdf
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://bib-pubdb1.desy.de/record/479017/files/ome-12-7-2508.2.pdf
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://bib-pubdb1.desy.de/record/479017/files/ome-12-7-2508.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://bib-pubdb1.desy.de/record/479017/files/ome-12-7-2508.2.pdf?subformat=pdfa
|x pdfa
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://bib-pubdb1.desy.de/record/479017/files/ome-12-7-2508.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
|z StatID:(DE-HGF)0510
909 C O |o oai:bib-pubdb1.desy.de:479017
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1032520
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 0
|6 P:(DE-H253)PIP1032520
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1015067
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 1
|6 P:(DE-H253)PIP1015067
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1029186
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 2
|6 P:(DE-H253)PIP1029186
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1080454
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 3
|6 P:(DE-H253)PIP1080454
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1013198
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 4
|6 P:(DE-H253)PIP1013198
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1013198
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1014672
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 5
|6 P:(DE-H253)PIP1014672
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2022
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b OPT MATER EXPRESS : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 1 _ |0 I:(DE-H253)FS-CFEL-2-20120731
|k FS-CFEL-2
|l Ultrafast Lasers & X-rays Division
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)FS-CFEL-2-20120731
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21