001     478846
005     20230213123254.0
020 _ _ |a 978-3-95450-227-1
024 7 _ |a 10.18429/JACoW-IPAC2022-WEPOMS036
|2 doi
024 7 _ |a Stein:2022atw
|2 INSPIRETeX
024 7 _ |a inspire:2137525
|2 inspire
024 7 _ |a 10.3204/PUBDB-2022-02796
|2 datacite_doi
037 _ _ |a PUBDB-2022-02796
041 _ _ |a English
100 1 _ |a Stein, Oliver
|0 P:(DE-H253)PIP1014315
|b 0
|e Corresponding author
111 2 _ |a 13th International Particle Accelerator Conference
|g IPAC'22
|c Bangkok
|d 2022-06-12 - 2022-06-17
|w Thailand
245 _ _ |a Accelerating Linear Beam Dynamics Simulations for Machine Learning Applications
260 _ _ |a [Geneva]
|c 2022
|b JACoW Publishing, Geneva, Switzerland
295 1 0 |a [Ebook] 13th International Particle Accelerator Conference : June 12-17, 2022, Impact Forum, Muangthong Thani, Bangkok, Thailand : conference proceedings / Chanwattana, Thakonwat , [Geneva] : JACoW Publishing, July 2022,
300 _ _ |a 2330-2333
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1674468400_11759
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
500 _ _ |a Literaturangaben;
520 _ _ |a Machine learning has proven to be a powerful tool with many applications in the field of accelerator physics. Training machine learning models is a highly iterative process that requires large numbers of samples. However, beam time is often limited and many of the available simulation frameworks are not optimized for fast computation. As a result, training complex models can be infeasible. In this contribution, we introduce Cheetah, a linear beam dynamics framework optimized for fast computations. We show that Cheetah outperforms existing simulation codes in terms of speed and furthermore demonstrate the application of Cheetah to a reinforcement-learning problem as well as the successful transfer of the Cheetah-trained model to the real world. We anticipate that Cheetah will allow for faster development of more capable machine learning solutions in the field, one day enabling the development of autonomous accelerators.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a ZT-I-PF-5-6 - Autonomous Accelerator (AA) (2020_ZT-I-PF-5-6)
|0 G:(DE-HGF)2020_ZT-I-PF-5-6
|c 2020_ZT-I-PF-5-6
|x 1
588 _ _ |a Dataset connected to DataCite, INSPIRE
650 _ 7 |a Accelerator Physics
|2 Other
650 _ 7 |a MC5: Beam Dynamics and EM Fields
|2 Other
650 _ 7 |a simulation
|2 autogen
650 _ 7 |a space-charge
|2 autogen
650 _ 7 |a controls
|2 autogen
650 _ 7 |a GPU
|2 autogen
650 _ 7 |a experiment
|2 autogen
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Agapov, Ilya
|0 P:(DE-H253)PIP1011647
|b 1
700 1 _ |a Eichler, Annika
|0 P:(DE-H253)PIP1087213
|b 2
700 1 _ |a Kaiser, Jan
|0 P:(DE-H253)PIP1095111
|b 3
773 _ _ |a 10.18429/JACoW-IPAC2022-WEPOMS036
856 4 _ |u https://bib-pubdb1.desy.de/record/478846/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/478846/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/478846/files/IPAC22_Cheetah.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/478846/files/wepoms036.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/478846/files/IPAC22_Cheetah.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/478846/files/wepoms036.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:478846
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1014315
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1011647
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1087213
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1087213
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1095111
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and Technologies
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-H253)MSK-20120731
|k MSK
|l Strahlkontrollen
|x 0
920 1 _ |0 I:(DE-H253)MPY-20120731
|k MPY
|l Beschleunigerphysik
|x 1
920 1 _ |0 I:(DE-H253)D3-20120731
|k D3
|l Strahlenschutz
|x 2
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-H253)MSK-20120731
980 _ _ |a I:(DE-H253)MPY-20120731
980 _ _ |a I:(DE-H253)D3-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21