001     478310
005     20250720040624.0
024 7 _ |a 10.1007/s41781-021-00056-0
|2 doi
024 7 _ |a Buhmann:2020pmy
|2 INSPIRETeX
024 7 _ |a inspire:1795887
|2 inspire
024 7 _ |a 2510-2036
|2 ISSN
024 7 _ |a 2510-2044
|2 ISSN
024 7 _ |a arXiv:2005.05334
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2022-02526
|2 datacite_doi
024 7 _ |2 openalex
|a openalex:W3025344913
024 7 _ |a altmetric:81891886
|2 altmetric
037 _ _ |a PUBDB-2022-02526
041 _ _ |a English
082 _ _ |a 004
088 _ _ |a arXiv:2005.05334
|2 arXiv
088 _ _ |a DESY-20-075
|2 DESY
100 1 _ |a Gaede, Frank
|0 P:(DE-H253)PIP1002530
|b 0
|e Corresponding author
245 _ _ |a Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed
260 _ _ |a Cham, Switzerland
|c 2021
|b Springer International Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1652187094_13611
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Computing and Software for Big Science 5, 13 (2021). 17 pages, 12 figures
520 _ _ |a Accurate simulation of physical processes is crucial for the success of modern particle physics. However, simulating the development and interaction of particle showers with calorimeter detectors is a time consuming process and drives the computing needs of large experiments at the LHC and future colliders. Recently, generative machine learning models based on deep neural networks have shown promise in speeding up this task by several orders of magnitude. We investigate the use of a new architecture—the Bounded Information Bottleneck Autoencoder—for modelling electromagnetic showers in the central region of the Silicon-Tungsten calorimeter of the proposed International Large Detector. Combined with a novel second post-processing network, this approach achieves an accurate simulation of differential distributions including for the first time the shape of the minimum-ionizing-particle peak compared to a full Geant4 simulation for a high-granularity calorimeter with 27k simulated channels. The results are validated by comparing to established architectures. Our results further strengthen the case of using generative networks for fast simulation and demonstrate that physically relevant differential distributions can be described with high accuracy.
536 _ _ |a 611 - Fundamental Particles and Forces (POF3-611)
|0 G:(DE-HGF)POF3-611
|c POF3-611
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
650 _ 7 |a calorimeter
|2 INSPIRE
650 _ 7 |a iron
|2 INSPIRE
650 _ 7 |a tungsten
|2 INSPIRE
650 _ 7 |a showers: electromagnetic
|2 INSPIRE
650 _ 7 |a particle: interaction
|2 INSPIRE
650 _ 7 |a neural network
|2 INSPIRE
650 _ 7 |a GEANT
|2 INSPIRE
650 _ 7 |a ILD detector
|2 INSPIRE
650 _ 7 |a artificial intelligence
|2 INSPIRE
650 _ 7 |a numerical calculations
|2 INSPIRE
650 _ 7 |a numerical methods
|2 INSPIRE
650 _ 7 |a performance
|2 INSPIRE
650 _ 7 |a Deep learning
|2 autogen
650 _ 7 |a Generative models
|2 autogen
650 _ 7 |a Calorimeter
|2 autogen
650 _ 7 |a Simulation
|2 autogen
650 _ 7 |a High granularity
|2 autogen
650 _ 7 |a GAN
|2 autogen
650 _ 7 |a WGAN
|2 autogen
650 _ 7 |a BIB-AE
|2 autogen
693 _ _ |a ILC
|e Facility (machine) ILC
|1 EXP:(DE-H253)ILC-20150101
|0 EXP:(DE-H253)ILC(machine)-20150101
|5 EXP:(DE-H253)ILC(machine)-20150101
|x 0
700 1 _ |a Eren, Engin
|0 P:(DE-H253)PIP1020256
|b 1
700 1 _ |a Krüger, Katja
|0 P:(DE-H253)PIP1000475
|b 2
700 1 _ |a Diefenbacher, Sascha Daniel
|0 P:(DE-H253)PIP1090777
|b 3
|e Corresponding author
700 1 _ |a Korol, Anatolii
|0 P:(DE-H253)PIP1090878
|b 4
700 1 _ |a Kasieczka, Gregor
|0 P:(DE-H253)PIP1081743
|b 5
700 1 _ |a Buhmann, Erik
|0 P:(DE-H253)PIP1018807
|b 6
773 _ _ |a 10.1007/s41781-021-00056-0
|g Vol. 5, no. 1, p. 13
|0 PERI:(DE-600)2908677-2
|n 1
|p 13
|t Computing and software for big science
|v 5
|y 2021
|x 2510-2036
787 0 _ |a Gaede, Frank et.al.
|d arxiv hep-ex, 2020
|i IsParent
|0 PUBDB-2020-01630
|r DESY-20-075 ; arXiv:2005.05334
|t Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/478310/files/Buhmann2021_Article_GettingHighHighFidelitySimulat.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/478310/files/Buhmann2021_Article_GettingHighHighFidelitySimulat.pdf?subformat=pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/478310/files/Scan%2010.05.2022%2C%2015-25.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/478310/files/Scan%2010.05.2022%2C%2015-25.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:bib-pubdb1.desy.de:478310
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
|q OpenAPC
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1002530
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1020256
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1000475
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1090777
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1090878
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1081743
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1018807
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Universum
|1 G:(DE-HGF)POF3-610
|0 G:(DE-HGF)POF3-611
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-H253)FLC-20120731
|k FLC
|l Experimente an Lepton Collidern
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FLC-20120731
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21