001     476406
005     20250715180024.0
024 7 _ |a 10.5194/ejm-34-201-2022
|2 doi
024 7 _ |a 0935-1221
|2 ISSN
024 7 _ |a 1617-4011
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-01721
|2 datacite_doi
024 7 _ |a altmetric:125681947
|2 altmetric
024 7 _ |a WOS:000776254100001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4221104614
037 _ _ |a PUBDB-2022-01721
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Lathe, Christian
|0 P:(DE-H253)PIP1002121
|b 0
245 _ _ |a In situ reinvestigation of reaction phase A plus high-pressure clinoenstatite to forsterite plus water in the system MgO-SiO$_2$-H$_2$O (MSH)
260 _ _ |a Göttingen
|c 2022
|b Copernicus Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1649249330_10145
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The dehydration reaction of phase A + high P clinoenstatite to forsterite + water was experimentally investigated at water-saturated conditions in the pressure range between 7.0 and 10.0 GPa by in situ reversal runs in a multi-anvil press at the synchrotron source of PETRA III in Hamburg. By using closed watertight X-ray transparent Ti capsules, its position is determined by reversal brackets at 8.3 GPa (700–760 ∘C), 8.6 GPa (700–740 ∘C), and 9.8 GPa (750–800 ∘C); thus, the equilibrium of the reaction corresponds ideally to the data reported by Wunder (1998). Optical investigations of the quenched product phases show strong grain coarsening of phase A and clinoenstatite, whereas nucleated forsterite from the breakdown of the aforementioned phases is very fine grained. This corresponds to recent experimental observations that the grain size of phases formed in hydration reactions are significantly larger than those from dehydration reactions.In addition, we performed three time-dependent in situ experiments at 9–10 GPa and 800–870 ∘C and monitored the reaction progress every 10 min to determine the kinetics of the forsterite formation from phase A + high P clinoenstatite. The growth of forsterite at these P–T conditions, already visible after 10 min, confirms the results of the bracketing experiments. However, the reaction is extremely slow, and even after more than 3 h, significant amounts of phase A and high P clinoenstatite are still present. This is in contradiction to other dehydration reactions of former experimental studies, e.g. the fast dehydration of serpentine, which completely dehydrates within 3 h, even at much lower temperatures, closely overstepping serpentine stability.Despite its reaction sluggishness, which would contradict the concept of earthquake initiation, the observed formation of nano-sized forsterite as a dehydration product may still indicate the potential of this reaction to cause mechanical instabilities and, thus, seismicity within cold subduction zones at depths of the Earth's mantle. Additionally, at depths exceeding serpentine dehydration, the phase A + high P/low P clinoenstatite breakdown to forsterite + water might induce geochemical and geophysical processes, including the formation of low-velocity zones within the overlying mantle wedge from the large amounts of fluid liberated by this water line reaction. After the breakdown of antigorite, the assemblage phase A + clinoenstatite might act as a bridge to transport water to larger depths during cold subduction, followed by the formation of other hydrous high P phases.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20210162 (I-20210162)
|0 G:(DE-H253)I-20210162
|c I-20210162
|x 2
588 _ _ |a Dataset connected to DataCite
693 _ _ |a PETRA III
|f PETRA Beamline P61.2
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P61.2-20150101
|6 EXP:(DE-H253)P-P61.2-20150101
|x 0
700 1 _ |a Koch-Mueller, Monika
|0 P:(DE-H253)PIP1016610
|b 1
700 1 _ |a Wunder, Bernd
|0 P:(DE-H253)PIP1016617
|b 2
|e Corresponding author
700 1 _ |a Appelt, Oona
|b 3
700 1 _ |a Bhat, Shrikant
|0 P:(DE-H253)PIP1015084
|b 4
|u desy
700 1 _ |a Farla, Robert
|0 P:(DE-H253)PIP1080589
|b 5
|u desy
773 _ _ |a 10.5194/ejm-34-201-2022
|g Vol. 34, no. 2, p. 201 - 213
|0 PERI:(DE-600)2039451-2
|n 2
|p 201 - 213
|t European journal of mineralogy
|v 34
|y 2022
|x 0935-1221
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/476406/files/ejm-34-201-2022.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/476406/files/ejm-34-201-2022.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:476406
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a GeoForschungsZentrum Potsdam
|0 I:(DE-588b)1223554-4
|k GFZ
|b 0
|6 P:(DE-H253)PIP1002121
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1002121
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1016610
910 1 _ |a GeoForschungsZentrum Potsdam
|0 I:(DE-588b)1223554-4
|k GFZ
|b 1
|6 P:(DE-H253)PIP1016610
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1016617
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1015084
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1015084
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1080589
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J MINERAL : 2019
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 1
920 1 _ |0 I:(DE-H253)GFZ-20120731
|k GFZ
|l GeoForschungsZentrum Potsdam
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 _ _ |a I:(DE-H253)GFZ-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21