001     476364
005     20250724151411.0
024 7 _ |a 10.1088/1367-2630/ac3b2e
|2 doi
024 7 _ |a 10.3204/PUBDB-2022-01703
|2 datacite_doi
024 7 _ |a WOS:000749506300001
|2 WOS
024 7 _ |a openalex:W3215389827
|2 openalex
037 _ _ |a PUBDB-2022-01703
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Aufleger, Lennart
|0 P:(DE-H253)PIP1029312
|b 0
|e Corresponding author
245 _ _ |a Line-shape broadening of an autoionizing state in helium at high XUV intensity
260 _ _ |a [London]
|c 2022
|b IOP
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1649157790_23953
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We study the interaction of intense extreme ultraviolet (XUV) light with the 2s2p doubly excitedstate in helium. In addition to previously understood energy-level and phase shifts, high XUVintensities may lead to other absorption-line-shape distortions. Here, we report on experimentaltransient-absorption spectroscopy results on the 2s2p line-width modification in helium in intensestochastic XUV fields. A few-level-model simulation is realized to investigate the origins of thiseffect. We find that the line-shape broadening is connected to the strong coupling of the groundstate to the 2s2p doubly excited state which is embedded in the ionization continuum. As thebroadening takes place for intensities lower than for other strong-coupling processes, e.g. observedasymmetry changes of the absorption profile, this signature can be identified already in anintermediate intensity regime. These findings are in general relevant for resonant inner-shelltransitions in nonlinear experiments with XUV and x-ray photon energies at high intensity.
536 _ _ |a 6G2 - FLASH (DESY) (POF4-6G2)
|0 G:(DE-HGF)POF4-6G2
|c POF4-6G2
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a FLASH
|f FLASH Beamline BL2
|1 EXP:(DE-H253)FLASH-20150101
|0 EXP:(DE-H253)F-BL2-20150101
|6 EXP:(DE-H253)F-BL2-20150101
|x 0
700 1 _ |a Friebel, Patrick
|0 P:(DE-H253)PIP1086543
|b 1
700 1 _ |a Rupprecht, Patrick
|0 P:(DE-H253)PIP1081991
|b 2
700 1 _ |a Magunia, Alexander
|0 P:(DE-H253)PIP1029644
|b 3
700 1 _ |a Ding, Thomas
|0 P:(DE-H253)PIP1025177
|b 4
700 1 _ |a Rebholz, Marc
|0 P:(DE-H253)PIP1029310
|b 5
700 1 _ |a Hartmann, Maximilian
|0 P:(DE-H253)PIP1029309
|b 6
700 1 _ |a Ott, Christian
|0 P:(DE-H253)PIP1018108
|b 7
|e Corresponding author
700 1 _ |a Pfeifer, Thomas
|0 P:(DE-H253)PIP1010834
|b 8
|e Corresponding author
773 _ _ |a 10.1088/1367-2630/ac3b2e
|g Vol. 24, no. 1, p. 013014 -
|0 PERI:(DE-600)1464444-7
|n 1
|p 013014 -
|t New journal of physics
|v 24
|y 2022
|x 1367-2630
856 4 _ |u https://doi.org/10.1088/1367-2630/ac3b2e
856 4 _ |u https://bib-pubdb1.desy.de/record/476364/files/Aufleger_2022_New_J._Phys._24_013014.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/476364/files/Aufleger_2022_New_J._Phys._24_013014.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:476364
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1029312
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 0
|6 P:(DE-H253)PIP1029312
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1086543
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 1
|6 P:(DE-H253)PIP1086543
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 2
|6 P:(DE-H253)PIP1081991
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 3
|6 P:(DE-H253)PIP1029644
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1029644
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1025177
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 4
|6 P:(DE-H253)PIP1025177
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1029310
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 5
|6 P:(DE-H253)PIP1029310
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1029309
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 6
|6 P:(DE-H253)PIP1029309
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 7
|6 P:(DE-H253)PIP1018108
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1018108
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1010834
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 8
|6 P:(DE-H253)PIP1010834
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G2
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v FLASH (DESY)
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW J PHYS : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)H1_MPIH-20120731
|k H1/MPIH
|l H1 / MPI Heidelberg
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)H1_MPIH-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21