001     476069
005     20220701104424.0
024 7 _ |a 10.1007/s10704-021-00595-y
|2 doi
024 7 _ |a 0020-7268
|2 ISSN
024 7 _ |a 0376-9429
|2 ISSN
024 7 _ |a 1573-2673
|2 ISSN
024 7 _ |a 2214-7306
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-01564
|2 datacite_doi
024 7 _ |a WOS:000712222600001
|2 WOS
037 _ _ |a PUBDB-2022-01564
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a De Francisco, Unai
|0 P:(DE-H253)PIP1087970
|b 0
|e Corresponding author
245 _ _ |a 3D characterisation of hydrogen environmentally assisted cracking during static loading of AA7449-T7651
260 _ _ |a Dordrecht [u.a.]
|c 2021
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1647863914_1131
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this investigation, synchrotron X-ray microtomography was used to perform 3D in situ observations of crack initiation and growth during hydrogen environmentally assisted cracking (HEAC) in tensile samples of AA7449-T7651. Two smooth tensile samples with a 1 mm diameter gauge section were held at a fixed displacement (≈30% of yield stress) in warm, moist air (≈76∘C, 73% relative humidity). The samples were then imaged repeatedly using X-ray tomography until they fractured completely. The tomograms showing the nucleation and evolution of intergranular cracks were correlated with electron microscopy fractographs. This enabled the identification of crack initiation sites and the characterisation of the crack growth behaviour relative to the microstructure. The samples were found to fracture within an environmental exposure time of 240 min. Some cracks in both samples nucleated within an exposure time of 80 min (33–40% of the total lifetime). Many cracks were found to nucleate both internally and at the sample surface. However, only superficial cracks contributed to the final fracture surface as they grew faster owing to the direct environmental exposure and the larger crack opening. HEAC occurred prominently via brittle intergranular cracking, and cracks were found to slow down when approaching grain boundary triple junctions. Additionally, crack shielding from nearby cracks and the presence of coarse Al–Cu–Fe particles at the grain boundaries were also found to temporarily reduce the crack growth rates. After prolonged crack growth, the HEAC cracks displayed ductile striations and transgranular fracture, revealing a change in the crack growth mechanism at higher stress intensity factors.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20190687 EC (I-20190687-EC)
|0 G:(DE-H253)I-20190687-EC
|c I-20190687-EC
|x 1
536 _ _ |a CALIPSOplus - Convenient Access to Light Sources Open to Innovation, Science and to the World (730872)
|0 G:(EU-Grant)730872
|c 730872
|f H2020-INFRAIA-2016-1
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P07
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P07-20150101
|6 EXP:(DE-H253)P-P07-20150101
|x 0
700 1 _ |a Beckmann, Felix
|0 P:(DE-H253)PIP1002967
|b 1
700 1 _ |a Moosmann, Julian
|0 P:(DE-H253)PIP1030371
|b 2
700 1 _ |a Larrosa, Nicolas O.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Peel, Matthew J.
|0 P:(DE-H253)PIP1087967
|b 4
773 _ _ |a 10.1007/s10704-021-00595-y
|g Vol. 232, no. 1, p. 93 - 116
|0 PERI:(DE-600)1478986-3
|n 1
|p 93 - 116
|t International journal of fracture
|v 232
|y 2021
|x 0020-7268
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/476069/files/DeFrancisco-2021-3D%20characterisation%20of%20hydrogen%20environmentally%20assisted%20cracking%20during%20static%20loading%20of%20AA7449-T7651.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/476069/files/DeFrancisco-2021-3D%20characterisation%20of%20hydrogen%20environmentally%20assisted%20cracking%20during%20static%20loading%20of%20AA7449-T7651.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:476069
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1087970
910 1 _ |a Helmholtz-Zentrum Geesthacht
|0 I:(DE-588b)16087541-9
|k HZG
|b 1
|6 P:(DE-H253)PIP1002967
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1002967
910 1 _ |a Helmholtz-Zentrum Hereon
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-H253)PIP1002967
910 1 _ |a Helmholtz-Zentrum Geesthacht
|0 I:(DE-588b)16087541-9
|k HZG
|b 2
|6 P:(DE-H253)PIP1030371
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1030371
910 1 _ |a Helmholtz-Zentrum Hereon
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-H253)PIP1030371
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1087967
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J FRACTURE : 2019
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)Hereon-20210428
|k Hereon
|l Helmholtz-Zentrum Hereon
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)Hereon-20210428
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21