001     475974
005     20230510114859.0
024 7 _ |a Papathanasiou:2022lan
|2 INSPIRETeX
024 7 _ |a inspire:2058001
|2 inspire
024 7 _ |a arXiv:2203.13016
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2022-01551
|2 datacite_doi
037 _ _ |a PUBDB-2022-01551
041 _ _ |a English
088 _ _ |a DESY-22-055
|2 DESY
088 _ _ |a arXiv:2203.13016
|2 arXiv
100 1 _ |a Papathanasiou, Georgios
|0 P:(DE-H253)PIP1032690
|b 0
|e Corresponding author
245 _ _ |a The SAGEX Review on Scattering Amplitudes, Chapter 5: Analytic Bootstraps for Scattering Amplitudes and Beyond
260 _ _ |c 2022
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1648553880_7550
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 55 pages, see also the overview article
520 _ _ |a One of the main challenges in obtaining predictions for collider experiments from perturbative quantum field theory, is the direct evaluation of the Feynman integrals it gives rise to. In this chapter, we review an alternative bootstrap method that instead efficiently constructs physical quantities by exploiting their analytic structure. We present in detail the setting where this method has been originally developed, six- and seven-particle amplitudes in the large-color limit of $\mathcal{N}=4$ super Yang-Mills theory. We discuss the class of functions these amplitudes belong to, and the strong clues mathematical objects known as cluster algebras provide for rendering this function space both finite and of relatively small dimension at each loop order. We then describe how to construct this function space, as well as how to locate the amplitude inside of it with the help of kinematic limits, and apply the general procedure to a concrete example: The determination of the two-loop correction to the first nontrivial six-particle amplitude. We also provide an overview of other areas where the realm of the bootstrap paradigm is expanding, including other scattering amplitudes, form factors and Feynman integrals, and point out the analytic properties of potentially wider applicability that it has revealed.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
588 _ _ |a Dataset connected to INSPIRE
650 _ 7 |a algebra, cluster
|2 INSPIRE
650 _ 7 |a gauge field theory, Yang-Mills
|2 INSPIRE
650 _ 7 |a bootstrap
|2 INSPIRE
650 _ 7 |a scattering amplitude
|2 INSPIRE
650 _ 7 |a Feynman graph
|2 INSPIRE
650 _ 7 |a analytic properties
|2 INSPIRE
650 _ 7 |a kinematics
|2 INSPIRE
650 _ 7 |a structure
|2 INSPIRE
650 _ 7 |a field theory
|2 INSPIRE
650 _ 7 |a form factor
|2 INSPIRE
650 _ 7 |a supersymmetry
|2 INSPIRE
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
856 4 _ |u https://bib-pubdb1.desy.de/record/475974/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/475974/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/475974/files/2203.13016v1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/475974/files/2203.13016v1.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:475974
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1032690
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Published
|0 StatID:(DE-HGF)0580
|2 StatID
920 1 _ |0 I:(DE-H253)T-20120731
|k T
|l Theorie-Gruppe
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)T-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21