000475946 001__ 475946
000475946 005__ 20230214113301.0
000475946 0247_ $$2arXiv$$aarXiv:2101.12556
000475946 0247_ $$2altmetric$$aaltmetric:99159558
000475946 037__ $$aPUBDB-2022-01523
000475946 041__ $$aEnglish
000475946 088__ $$2arXiv$$aarXiv:2101.12556
000475946 088__ $$2DESY$$aDESY-20-234
000475946 088__ $$2Other$$aHU-EP-20/42
000475946 082__ $$a600
000475946 1001_ $$0P:(DE-H253)PIP1082608$$aPaul, Ayan$$b0$$eCorresponding author
000475946 245__ $$aEmergence of universality in the transmission dynamics of COVID-19
000475946 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1647340305_30945
000475946 3367_ $$2ORCID$$aWORKING_PAPER
000475946 3367_ $$028$$2EndNote$$aElectronic Article
000475946 3367_ $$2DRIVER$$apreprint
000475946 3367_ $$2BibTeX$$aARTICLE
000475946 3367_ $$2DataCite$$aOutput Types/Working Paper
000475946 500__ $$a16 pages and 6 figures (version corresponding to the published version)
000475946 520__ $$aThe complexities involved in modelling the transmission dynamics of COVID-19 has been a roadblock in achieving predictability in the spread and containment of the disease. In addition to understanding the modes of transmission, the effectiveness of the mitigation methods also needs to be built into any effective model for making such predictions. We show that such complexities can be circumvented by appealing to scaling principles which lead to the emergence of universality in the transmission dynamics of the disease. The ensuing data collapse renders the transmission dynamics largely independent of geopolitical variations, the effectiveness of various mitigation strategies, population demographics, etc. We propose a simple two-parameter model -- the Blue Sky model -- and show that one class of transmission dynamics can be explained by a solution that lives at the edge of a blue sky bifurcation. In addition, the data collapse leads to an enhanced degree of predictability in the disease spread for several geographical scales which can also be realized in a model-independent manner as we show using a deep neural network. The methodology adopted in this work can potentially be applied to the transmission of other infectious diseases and new universality classes may be found. The predictability in transmission dynamics and the simplicity of our methodology can help in building policies for exit strategies and mitigation methods during a pandemic.
000475946 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000475946 588__ $$aDataset connected to arXivarXiv
000475946 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000475946 7001_ $$aBhattacharjee, Jayanta Kumar$$b1
000475946 7001_ $$aPal, Akshay$$b2
000475946 7001_ $$aChakraborty, Sagar$$b3
000475946 8564_ $$uhttps://bib-pubdb1.desy.de/record/475946/files/2101.12556v4.pdf$$yOpenAccess
000475946 8564_ $$uhttps://bib-pubdb1.desy.de/record/475946/files/2101.12556v4.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000475946 909CO $$ooai:bib-pubdb1.desy.de:475946$$pVDB
000475946 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1082608$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000475946 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000475946 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000475946 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000475946 980__ $$apreprint
000475946 980__ $$aVDB
000475946 980__ $$aI:(DE-H253)T-20120731
000475946 980__ $$aUNRESTRICTED