Home > Publications database > Monolithic perovskite/silicon tandems with >28% efficiency: role of silicon-surface texture on perovskite properties > print |
001 | 475846 | ||
005 | 20250715175419.0 | ||
024 | 7 | _ | |a 10.1002/adfm.202205557 |2 doi |
024 | 7 | _ | |a 1616-301X |2 ISSN |
024 | 7 | _ | |a 1057-9257 |2 ISSN |
024 | 7 | _ | |a 1099-0712 |2 ISSN |
024 | 7 | _ | |a 1616-3028 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2022-01476 |2 datacite_doi |
024 | 7 | _ | |a altmetric:140180220 |2 altmetric |
024 | 7 | _ | |a WOS:000895512600001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4312045362 |
037 | _ | _ | |a PUBDB-2022-01476 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a De Bastiani, M. De |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Monolithic perovskite/silicon tandems with >28% efficiency: role of silicon-surface texture on perovskite properties |
260 | _ | _ | |a Weinheim |c 2023 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1674811730_19561 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Textured silicon wafers used in silicon solar cell manufacturing offer superior light trapping, which is a critical enabler for high-performance photovoltaics. A similar optical benefit can be obtained in monolithic perovskite/silicon tandem solar cells, enhancing the current output of the silicon bottom cell. Yet, such complex silicon surfaces may affect the structural and optoelectronic properties of the overlying perovskite films. Here, through extensive characterization based on optical and microstructural spectroscopy, it is found that the main effect of such substrate morphology lies in an altering of the photoluminescence response of the perovskite, which is associated with thickness variations of the perovskite, rather than lattice strain or compositional changes. With this understanding, the design of high-performance perovskite/silicon tandems is rationalized, yielding certified power conversion efficiencies of >28%. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P06 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P06-20150101 |6 EXP:(DE-H253)P-P06-20150101 |x 0 |
700 | 1 | _ | |a Jalmood, R. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Liu, J. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Ossig, Christina Sonja |0 P:(DE-H253)PIP1031991 |b 3 |u desy |
700 | 1 | _ | |a Vlk, A. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Vegso, K. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Babics, M. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Isikgor, F. H. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Selvin, A. S. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Azmi, R. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Ugur, E. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Banerjee, S. |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Mirabelli, A. J. |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Aydin, E. |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Allen, T. G. |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Rehman, A. U. |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Van Kerschaver, E. |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Siffalovic, P. |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Stückelberger, Michael |0 P:(DE-H253)PIP1081708 |b 18 |u desy |
700 | 1 | _ | |a Ledinsky, M. |0 P:(DE-HGF)0 |b 19 |
700 | 1 | _ | |a De Wolf, S. |0 P:(DE-HGF)0 |b 20 |
773 | _ | _ | |a 10.1002/adfm.202205557 |g p. 2205557 - |0 PERI:(DE-600)2039420-2 |n 4 |p 2205557 |t Advanced functional materials |v 33 |y 2023 |x 1616-301X |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/475846/files/Adv%20Funct%20Materials%20-%202022%20-%20De%20Bastiani%20-%20Monolithic%20Perovskite%20Silicon%20Tandems%20with%2028%20Efficiency%20Role%20of.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/475846/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/475846/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/475846/files/Adv%20Funct%20Materials%20-%202022%20-%20De%20Bastiani%20-%20Monolithic%20Perovskite%20Silicon%20Tandems%20with%2028%20Efficiency%20Role%20of.pdf?subformat=pdfa |
856 | 4 | _ | |y Published on 2022-12-09. Available in OpenAccess from 2023-12-09. |u https://bib-pubdb1.desy.de/record/475846/files/De%20Bastiani%20et%20al_advanced%20materials_manuscript.pdf |
856 | 4 | _ | |y Published on 2022-12-09. Available in OpenAccess from 2023-12-09. |x pdfa |u https://bib-pubdb1.desy.de/record/475846/files/De%20Bastiani%20et%20al_advanced%20materials_manuscript.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:475846 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1031991 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 18 |6 P:(DE-H253)PIP1081708 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 18 |6 P:(DE-H253)PIP1081708 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l From Matter to Materials and Life |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2022-11-15 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2022-11-15 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-15 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV FUNCT MATER : 2022 |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-24 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-24 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b ADV FUNCT MATER : 2022 |d 2023-10-24 |
920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-20140814 |k FS-PETRA |l FS-PETRA |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-PETRA-20140814 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|