TY - JOUR
AU - Yachmenev, Andrey
AU - Yang, Guang
AU - Zak, Emil
AU - Yurchenko, Sergei
AU - Küpper, Jochen
TI - The nuclear-spin-forbidden rovibrational transitions of water from first principles
JO - The journal of chemical physics
VL - 156
IS - 20
SN - 0021-9606
CY - Melville, NY
PB - American Institute of Physics
M1 - PUBDB-2022-01426
SP - 204307
PY - 2022
AB - The water molecule occurs in two nuclear-spin isomers that differ by the value of the total nuclear spin of the hydrogen atoms, i.e., I=0 for para-H<sub>2</sub>O and I=1 for ortho-H<sub>2</sub>O. Spectroscopic transitions between rovibrational states of ortho and para water are extremely weak due to the tiny hyperfine nuclear-spin-rotation interaction of only ∼ 30 kHz and so far were not observed. We report the first comprehensive theoretical investigation of the hyperfine effects and ortho-para transitions in H<sub>2</sub><sup>16</sup>O due to nuclear-spin-rotation and spin-spin interactions. We also present the details of our newly developed general variational approach to the simulation of hyperfine effects in polyatomic molecules. Our results for water suggest that the strongest ortho-para transitions with room-temperature intensities on the order of 10<sup>−31</sup> cm/molecule are about an order of magnitude larger than previously predicted values and should be detectable in the mid-infrared ν<sub>2</sub> and near-infrared 2ν<sub>1</sub>+ν<sub>2</sub> and ν<sub>1</sub>+ν<sub>2</sub>+ν<sub>3</sub> bands by current spectroscopy experiments.
LB - PUB:(DE-HGF)16
C6 - pmid:35649881
UR - <Go to ISI:>//WOS:000802881400011
DO - DOI:10.1063/5.0090771
UR - https://bib-pubdb1.desy.de/record/475684
ER -