001     474839
005     20250715175617.0
024 7 _ |a 10.1063/5.0078927
|2 doi
024 7 _ |a 10.3204/PUBDB-2022-01032
|2 datacite_doi
024 7 _ |a WOS:000767648900007
|2 WOS
024 7 _ |2 openalex
|a openalex:W4221067942
037 _ _ |a PUBDB-2022-01032
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Loisch, Gregor
|0 P:(DE-H253)PIP1026627
|b 0
|e Corresponding author
245 _ _ |a Direct Measurement of Photocathode Time Response in a High-Brightness Photoinjector
260 _ _ |a Melville, NY
|c 2022
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1647438493_28784
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electron photoinjectors provide high-brightness electron beams to numerous research applications in physics, chemistry, material, and life sciences. Semiconductor photocathodes are widely used here, as they enable the production of low-emittance beams with variable charge at high repetition rates. One of the key figures of merit of photocathodes is the minimum achievable bunch length. In semiconductor cathodes, this is dominated by scattering effects and varying penetration depths of the extracting photons, which leads to a characteristic electron emission function. We present a method to determine this cathode time response with resolution on the tens of femtoseconds level, breaking the resolution barrier encountered in previous studies. The method is demonstrated with cesium-telluride (Cs$_2$Te) and gold cathodes, revealing response times of (184 ± 41) fs up to (253 ± 58) fs for the semiconductor and an upper limit of (93 ± 17) fs for the metal. Monte Carlo simulations of Cs$_2$Te emission benchmarked to these results give detailed information about the cathode material.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
693 _ _ |0 EXP:(DE-H253)PITZ-20150101
|5 EXP:(DE-H253)PITZ-20150101
|e Photo Injector Test Facility
|x 0
700 1 _ |a Chen, Ye Lining
|0 P:(DE-H253)PIP1031145
|b 1
700 1 _ |a Koschitzki, Christian
|0 P:(DE-H253)PIP1080893
|b 2
700 1 _ |a Qian, Houjun
|0 P:(DE-H253)PIP1030052
|b 3
700 1 _ |a Gross, Matthias
|0 P:(DE-H253)PIP1013620
|b 4
700 1 _ |a Hannah, Adrian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hoffmann, Andreas
|0 P:(DE-H253)PIP1088516
|b 6
700 1 _ |a Kalantaryan, Davit
|0 P:(DE-H253)PIP1015089
|b 7
700 1 _ |a Krasilnikov, Mikhail
|0 P:(DE-H253)PIP1004128
|b 8
700 1 _ |a Lederer, Sven
|0 P:(DE-H253)PIP1005695
|b 9
700 1 _ |a Li, Xiangkun
|0 P:(DE-H253)PIP1081485
|b 10
700 1 _ |a Lishilin, Osip
|0 P:(DE-H253)PIP1023202
|b 11
700 1 _ |a Melkumyan, David
|0 P:(DE-H253)PIP1004130
|b 12
700 1 _ |a Monaco, Laura
|0 P:(DE-H253)PIP1007172
|b 13
700 1 _ |a Niemczyk, Raffael
|0 P:(DE-H253)PIP1032458
|b 14
700 1 _ |a Oppelt, Anne
|0 P:(DE-H253)PIP1011785
|b 15
700 1 _ |a Sertore, Daniele
|0 P:(DE-H253)PIP1007171
|b 16
700 1 _ |a Stephan, Frank
|0 P:(DE-H253)PIP1004143
|b 17
700 1 _ |a Valizadeh, Reza
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Vashchenko, Grygorii
|0 P:(DE-H253)PIP1007520
|b 19
700 1 _ |a Weilbach, Tobias
|0 P:(DE-H253)PIP1088945
|b 20
773 _ _ |a 10.1063/5.0078927
|0 PERI:(DE-600)1469436-0
|p 104102
|t Applied physics letters
|v 120
|y 2022
|x 0003-6951
856 4 _ |u https://aip.scitation.org/doi/10.1063/5.0078927
856 4 _ |u https://bib-pubdb1.desy.de/record/474839/files/Scan%2022.02.2022%2C%2011-59.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/474839/files/Scan%2022.02.2022%2C%2012-06.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/474839/files/5.0078927.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/474839/files/Scan%2022.02.2022%2C%2011-59.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/474839/files/Scan%2022.02.2022%2C%2012-06.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/474839/files/5.0078927.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:474839
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
|q OpenAPC
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1026627
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1031145
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1080893
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1030052
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1013620
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1088516
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 6
|6 P:(DE-H253)PIP1088516
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1015089
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1004128
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1005695
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1081485
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1023202
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1004130
910 1 _ |a Istituto Nazionale di Fisica Nucleare
|0 I:(DE-588b)214094-9
|k INFN
|b 13
|6 P:(DE-H253)PIP1007172
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 14
|6 P:(DE-H253)PIP1032458
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 15
|6 P:(DE-H253)PIP1011785
910 1 _ |a Istituto Nazionale di Fisica Nucleare
|0 I:(DE-588b)214094-9
|k INFN
|b 16
|6 P:(DE-H253)PIP1007171
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 17
|6 P:(DE-H253)PIP1004143
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 19
|6 P:(DE-H253)PIP1007520
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 20
|6 P:(DE-H253)PIP1088945
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and Technologies
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a TIB: AIP Publishing 2021
|2 APC
|0 PC:(DE-HGF)0102
920 1 _ |0 I:(DE-H253)Z_PITZ-20210408
|k Z_PITZ
|l Technologie
|x 0
920 1 _ |0 I:(DE-H253)MIN-20120731
|k MIN
|l Injektion
|x 1
920 1 _ |0 I:(DE-H253)MVS-20120731
|k MVS
|l Vakuumsysteme
|x 2
920 1 _ |0 I:(DE-H253)MXL-20160301
|k MXL
|l Koordination des XFEL-Beschleunigers
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)Z_PITZ-20210408
980 _ _ |a I:(DE-H253)MIN-20120731
980 _ _ |a I:(DE-H253)MVS-20120731
980 _ _ |a I:(DE-H253)MXL-20160301
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21