TY - CONF AU - Hartung, Tobias AU - Jansen, Karl AU - Kuo, Frances Y. AU - Leövey, Hernan AU - Nuyens, Dirk AU - Sloan, Ian H. TI - Lattice field computations via recursive numerical integration JO - Proceedings of Science / International School for Advanced Studies VL - (LATTICE2021) IS - arXiv:2112.05069 SN - 1824-8039 CY - Trieste PB - SISSA M1 - PUBDB-2022-00992 M1 - arXiv:2112.05069 SP - 010 PY - 2022 N1 - arXiv admin note: text overlap with arXiv:2011.05451 AB - We investigate the application of efficient recursive numerical integration strategies to models in lattice gauge theory from quantum field theory. Given the coupling structure of the physics problems and the group structure within lattice cubature rules for numerical integration, we show how to approach these problems efficiently by means of Fast Fourier Transform techniques. In particular, we consider applications to the quantum mechanical rotor and compact U(1) lattice gauge theory, where the physical dimensions are two and three. This proceedings article reviews our results presented in J. Comput. Phys 443 (2021) 110527. T2 - The 38th International Symposium on Lattice Field Theory CY - 26 Jul 2021 - 31 Jul 2021, Zoom/Gather@Massachusetts Institute of Technology (USA) Y2 - 26 Jul 2021 - 31 Jul 2021 M2 - Zoom/Gather@Massachusetts Institute of Technology, USA LB - PUB:(DE-HGF)16 ; PUB:(DE-HGF)8 DO - DOI:10.3204/PUBDB-2022-00992 UR - https://bib-pubdb1.desy.de/record/474785 ER -