TY  - CONF
AU  - Hartung, Tobias
AU  - Jansen, Karl
AU  - Kuo, Frances Y.
AU  - Leövey, Hernan
AU  - Nuyens, Dirk
AU  - Sloan, Ian H.
TI  - Lattice field computations via recursive numerical integration
JO  - Proceedings of Science / International School for Advanced Studies
VL  - (LATTICE2021)
IS  - arXiv:2112.05069
SN  - 1824-8039
CY  - Trieste
PB  - SISSA
M1  - PUBDB-2022-00992
M1  - arXiv:2112.05069
SP  - 010
PY  - 2022
N1  - arXiv admin note: text overlap with arXiv:2011.05451
AB  - We investigate the application of efficient recursive numerical integration strategies to models in lattice gauge theory from quantum field theory. Given the coupling structure of the physics problems and the group structure within lattice cubature rules for numerical integration, we show how to approach these problems efficiently by means of Fast Fourier Transform techniques. In particular, we consider applications to the quantum mechanical rotor and compact U(1) lattice gauge theory, where the physical dimensions are two and three. This proceedings article reviews our results presented in J. Comput. Phys 443 (2021) 110527.
T2  - The 38th International Symposium on Lattice Field Theory
CY  - 26 Jul 2021 - 31 Jul 2021, Zoom/Gather@Massachusetts Institute of Technology (USA)
Y2  - 26 Jul 2021 - 31 Jul 2021
M2  - Zoom/Gather@Massachusetts Institute of Technology, USA
LB  - PUB:(DE-HGF)16 ; PUB:(DE-HGF)8
DO  - DOI:10.3204/PUBDB-2022-00992
UR  - https://bib-pubdb1.desy.de/record/474785
ER  -