TY - EJOUR AU - Bieringer, Sebastian Guido AU - Anja Butter AU - Diefenbacher, Sascha Daniel AU - Eren, Engin AU - Gaede, Frank AU - Hundhausen, Daniel Christian AU - Kasieczka, Gregor AU - Nachman, Benjamin AU - Plehn, Tilman AU - Mathias Trabs, KIT TI - Calomplification - The Power of Generative Calorimeter Models IS - DESY-22-031 M1 - PUBDB-2022-00968 M1 - DESY-22-031 M1 - arXiv:2202.07352 PY - 2022 N1 - 17 pages, 10 figures AB - Motivated by the high computational costs of classical simulations, machine-learned gen- erative models can be extremely useful in particle physics and elsewhere. They become especially attractive when surrogate models can efficiently learn the underlying distri- bution, such that a generated sample outperforms a training sample of limited size. This kind of GANplification has been observed for simple Gaussian models. We show the same effect for a physics simulation, specifically photon showers in a highly-granular electromagnetic calorimeter. KW - photon, showers (INSPIRE) KW - calorimeter, electromagnetic (INSPIRE) KW - costs (INSPIRE) LB - PUB:(DE-HGF)25 DO - DOI:10.3204/PUBDB-2022-00968 UR - https://bib-pubdb1.desy.de/record/474749 ER -