001     474354
005     20250715175447.0
024 7 _ |a 10.1016/j.electacta.2022.139881
|2 doi
024 7 _ |a 0013-4686
|2 ISSN
024 7 _ |a 1873-3859
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-00712
|2 datacite_doi
024 7 _ |a WOS:000794205200013
|2 WOS
024 7 _ |2 openalex
|a openalex:W4205428782
037 _ _ |a PUBDB-2022-00712
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Jacobse, Leon
|0 P:(DE-H253)PIP1085323
|b 0
|e Corresponding author
|u desy
245 _ _ |a Electrochemical oxidation of Pt(111) beyond the place-exchange model
260 _ _ |a New York, NY [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1675174055_18268
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Oxide formation plays an important role in the degradation of Pt electrocatalysts. However, the exact oxide structure and reaction mechanism are not fully understood. Here, we used in situ surface X-ray diffraction experiments to resolve the oxide formation at a Pt(111) model electrode at potentials near the onset of the oxygen evolution reaction. Fast experiments are possible by using X-ray photons with a high kinetic energy in combination with a large 2D detector. By employing very low potential sweep rates we obtain a more ordered oxidized surface compared to literature data from potential step experiments. This demonstrates that the oxidation process is strongly governed by the reaction kinetics. The increased surface order enables us to disentangle two subsequent oxidation process; initially the place-exchange process, followed by the formation of a partially disordered oxide in which still 50% of the surface atoms reside on sites commensurate to the Pt(111) surface. The reduction experiments indicate that the place-exchange process is structurally reversible, whereas the disordered oxide causes the surface roughening observed during potential cycling. Despite the increased surface order, oxide superstructures are not observed. These results provide important insights in the oxidation and degradation process of Pt(111), which are valuable for the design of improved electrocatalysts and they rationalize operating procedures.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a NFFA-Europe - NANOSCIENCE FOUNDRIES AND FINE ANALYSIS - EUROPE (654360)
|0 G:(EU-Grant)654360
|c 654360
|f H2020-INFRAIA-2014-2015
|x 2
536 _ _ |a NFFA-Europe_supported - Technically supported by Nanoscience Foundries and Fine Analysis Europe (2020_Join2-NFFA-Europe_funded)
|0 G:(DE-HGF)2020_Join2-NFFA-Europe_funded
|c 2020_Join2-NFFA-Europe_funded
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a Nanolab
|e DESY NanoLab: Electrochemistry Lab
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-05-20200101
|5 EXP:(DE-H253)Nanolab-05-20200101
|x 0
693 _ _ |a Nanolab
|e DESY NanoLab: X-Ray Diffraction
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-03-20150101
|5 EXP:(DE-H253)Nanolab-03-20150101
|x 1
693 _ _ |a PETRA III
|f PETRA Beamline P07
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P07-20150101
|6 EXP:(DE-H253)P-P07-20150101
|x 2
700 1 _ |a Vonk, Vedran
|0 P:(DE-H253)PIP1013931
|b 1
|u desy
700 1 _ |a Mccrum, Ian
|0 P:(DE-H253)PIP1092811
|b 2
700 1 _ |a Seitz, Christoph
|0 P:(DE-H253)PIP1025419
|b 3
|u desy
700 1 _ |a Koper, Marc
|0 P:(DE-H253)PIP1092838
|b 4
700 1 _ |a Rost, Marcel
|0 P:(DE-H253)PIP1085266
|b 5
700 1 _ |a Stierle, Andreas
|0 P:(DE-H253)PIP1012873
|b 6
|u desy
773 _ _ |a 10.1016/j.electacta.2022.139881
|g Vol. 407, p. 139881 -
|0 PERI:(DE-600)1483548-4
|p 139881
|t Electrochimica acta
|v 407
|y 2022
|x 0013-4686
856 4 _ |u https://bib-pubdb1.desy.de/record/474354/files/LJ%20Electrochemical%20oxidation%20of%20Pt%28111%29.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/474354/files/LJ%20Electrochemical%20oxidation%20of%20Pt%28111%29.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:474354
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1085323
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1013931
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1092811
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1025419
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1092838
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1085266
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1012873
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2019
|d 2021-01-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELECTROCHIM ACTA : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-NL-20120731
|k FS-NL
|l Nanolab
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-NL-20120731
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21