000474354 001__ 474354
000474354 005__ 20250715175447.0
000474354 0247_ $$2doi$$a10.1016/j.electacta.2022.139881
000474354 0247_ $$2ISSN$$a0013-4686
000474354 0247_ $$2ISSN$$a1873-3859
000474354 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-00712
000474354 0247_ $$2WOS$$aWOS:000794205200013
000474354 0247_ $$2openalex$$aopenalex:W4205428782
000474354 037__ $$aPUBDB-2022-00712
000474354 041__ $$aEnglish
000474354 082__ $$a540
000474354 1001_ $$0P:(DE-H253)PIP1085323$$aJacobse, Leon$$b0$$eCorresponding author$$udesy
000474354 245__ $$aElectrochemical oxidation of Pt(111) beyond the place-exchange model
000474354 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2022
000474354 3367_ $$2DRIVER$$aarticle
000474354 3367_ $$2DataCite$$aOutput Types/Journal article
000474354 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1675174055_18268
000474354 3367_ $$2BibTeX$$aARTICLE
000474354 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000474354 3367_ $$00$$2EndNote$$aJournal Article
000474354 520__ $$aOxide formation plays an important role in the degradation of Pt electrocatalysts. However, the exact oxide structure and reaction mechanism are not fully understood. Here, we used in situ surface X-ray diffraction experiments to resolve the oxide formation at a Pt(111) model electrode at potentials near the onset of the oxygen evolution reaction. Fast experiments are possible by using X-ray photons with a high kinetic energy in combination with a large 2D detector. By employing very low potential sweep rates we obtain a more ordered oxidized surface compared to literature data from potential step experiments. This demonstrates that the oxidation process is strongly governed by the reaction kinetics. The increased surface order enables us to disentangle two subsequent oxidation process; initially the place-exchange process, followed by the formation of a partially disordered oxide in which still 50% of the surface atoms reside on sites commensurate to the Pt(111) surface. The reduction experiments indicate that the place-exchange process is structurally reversible, whereas the disordered oxide causes the surface roughening observed during potential cycling. Despite the increased surface order, oxide superstructures are not observed. These results provide important insights in the oxidation and degradation process of Pt(111), which are valuable for the design of improved electrocatalysts and they rationalize operating procedures.
000474354 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000474354 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000474354 536__ $$0G:(EU-Grant)654360$$aNFFA-Europe - NANOSCIENCE FOUNDRIES AND FINE ANALYSIS - EUROPE (654360)$$c654360$$fH2020-INFRAIA-2014-2015$$x2
000474354 536__ $$0G:(DE-HGF)2020_Join2-NFFA-Europe_funded$$aNFFA-Europe_supported - Technically supported by Nanoscience Foundries and Fine Analysis Europe (2020_Join2-NFFA-Europe_funded)$$c2020_Join2-NFFA-Europe_funded$$x3
000474354 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000474354 693__ $$0EXP:(DE-H253)Nanolab-05-20200101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-05-20200101$$aNanolab$$eDESY NanoLab: Electrochemistry Lab$$x0
000474354 693__ $$0EXP:(DE-H253)Nanolab-03-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-03-20150101$$aNanolab$$eDESY NanoLab: X-Ray Diffraction$$x1
000474354 693__ $$0EXP:(DE-H253)P-P07-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P07-20150101$$aPETRA III$$fPETRA Beamline P07$$x2
000474354 7001_ $$0P:(DE-H253)PIP1013931$$aVonk, Vedran$$b1$$udesy
000474354 7001_ $$0P:(DE-H253)PIP1092811$$aMccrum, Ian$$b2
000474354 7001_ $$0P:(DE-H253)PIP1025419$$aSeitz, Christoph$$b3$$udesy
000474354 7001_ $$0P:(DE-H253)PIP1092838$$aKoper, Marc$$b4
000474354 7001_ $$0P:(DE-H253)PIP1085266$$aRost, Marcel$$b5
000474354 7001_ $$0P:(DE-H253)PIP1012873$$aStierle, Andreas$$b6$$udesy
000474354 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2022.139881$$gVol. 407, p. 139881 -$$p139881$$tElectrochimica acta$$v407$$x0013-4686$$y2022
000474354 8564_ $$uhttps://bib-pubdb1.desy.de/record/474354/files/LJ%20Electrochemical%20oxidation%20of%20Pt%28111%29.pdf$$yOpenAccess
000474354 8564_ $$uhttps://bib-pubdb1.desy.de/record/474354/files/LJ%20Electrochemical%20oxidation%20of%20Pt%28111%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000474354 909CO $$ooai:bib-pubdb1.desy.de:474354$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000474354 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1085323$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000474354 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013931$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000474354 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092811$$aExternal Institute$$b2$$kExtern
000474354 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1025419$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000474354 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092838$$aExternal Institute$$b4$$kExtern
000474354 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085266$$aExternal Institute$$b5$$kExtern
000474354 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012873$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000474354 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000474354 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000474354 9141_ $$y2022
000474354 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000474354 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000474354 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000474354 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000474354 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2019$$d2021-01-30
000474354 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELECTROCHIM ACTA : 2019$$d2021-01-30
000474354 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000474354 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000474354 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000474354 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000474354 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000474354 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000474354 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000474354 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000474354 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000474354 9201_ $$0I:(DE-H253)FS-NL-20120731$$kFS-NL$$lNanolab$$x1
000474354 980__ $$ajournal
000474354 980__ $$aVDB
000474354 980__ $$aI:(DE-H253)HAS-User-20120731
000474354 980__ $$aI:(DE-H253)FS-NL-20120731
000474354 980__ $$aUNRESTRICTED
000474354 9801_ $$aFullTexts