| Home > Publications database > Tempering and Intercritical Annealing of Air‐Hardening 4 wt% Medium Manganese Steels > print |
| 001 | 474253 | ||
| 005 | 20250929155725.0 | ||
| 024 | 7 | _ | |a 10.1002/srin.202100180 |2 doi |
| 024 | 7 | _ | |a 0177-4832 |2 ISSN |
| 024 | 7 | _ | |a 1611-3683 |2 ISSN |
| 024 | 7 | _ | |a 1869-344X |2 ISSN |
| 024 | 7 | _ | |a 10.3204/PUBDB-2022-00633 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:000652808900001 |2 WOS |
| 024 | 7 | _ | |a openalex:W3157371220 |2 openalex |
| 037 | _ | _ | |a PUBDB-2022-00633 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 660 |
| 100 | 1 | _ | |a Gramlich, Alexander |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Tempering and Intercritical Annealing of Air‐Hardening 4 wt% Medium Manganese Steels |
| 260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH-Verl. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1643706730_9387 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a The synchrotronhigh-energy X-ray diffraction (HEXRD) measurements were conducted atthe Powder Diffraction and Total Scattering Beamline P02.1 of PETRA III atDESY (Proposal No.: I-20191072), a member of the Helmholtz Association(HGF), which is gratefully acknowledged. Dr. Wenwen Song and Dr. Yan |
| 520 | _ | _ | |a The mechanical properties after tempering and intercritical annealing of medium manganese steels with 4 wt% Mn for forging applications are presented. After forging with subsequent air cooling, heat treatments were performed, specifically tempering from 250 and 450 °C and intercritical annealing between 600 and 675 °C. Tensile properties, Charpy V-notch impact toughness, and hardness were determined and compared with microstructural features characterized by metallography and synchrotron measurements, leading to the classification of six different heat treatment stages for medium manganese steels. Furthermore, the effects of different alloying additions (boron 0.0016–0.0057 wt%, molybdenum 0.2 wt%, and aluminum 0.5 wt%) are discussed with respect to the mechanical properties. It is shown that boron increases the impact toughness more effectively in the tempering regime, while the molybdenum alloyed samples exhibit higher toughness after intercritical annealing. Most of the materials and heat treatment states follow the inverse relationship between toughness and strength, while the aluminum alloyed samples show a superior toughness after tempering. |
| 536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |a PETRA III |f PETRA Beamline P02.1 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P02.1-20150101 |6 EXP:(DE-H253)P-P02.1-20150101 |x 0 |
| 700 | 1 | _ | |a Bleck, Wolfgang |0 P:(DE-H253)PIP1015377 |b 1 |
| 773 | _ | _ | |a 10.1002/srin.202100180 |g Vol. 92, no. 11, p. 2100180 - |0 PERI:(DE-600)2148555-0 |n 11 |p 2100180 |t Steel research international |v 92 |y 2021 |x 0177-4832 |
| 856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/474253/files/steel%20research%20international%20-%202021%20-%20Gramlich%20-%20Tempering%20and%20Intercritical%20Annealing%20of%20Air%25u2010Hardening%204%20wt%20Medium.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/474253/files/steel%20research%20international%20-%202021%20-%20Gramlich%20-%20Tempering%20and%20Intercritical%20Annealing%20of%20Air%25u2010Hardening%204%20wt%20Medium.pdf?subformat=pdfa |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:474253 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1015377 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-30 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b STEEL RES INT : 2019 |d 2021-01-30 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-30 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-30 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-30 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2021-01-30 |
| 915 | _ | _ | |a No Peer Review |0 StatID:(DE-HGF)0020 |2 StatID |b ASC |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-30 |
| 920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|