001     474253
005     20250929155725.0
024 7 _ |a 10.1002/srin.202100180
|2 doi
024 7 _ |a 0177-4832
|2 ISSN
024 7 _ |a 1611-3683
|2 ISSN
024 7 _ |a 1869-344X
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-00633
|2 datacite_doi
024 7 _ |a WOS:000652808900001
|2 WOS
024 7 _ |a openalex:W3157371220
|2 openalex
037 _ _ |a PUBDB-2022-00633
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Gramlich, Alexander
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Tempering and Intercritical Annealing of Air‐Hardening 4 wt% Medium Manganese Steels
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH-Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643706730_9387
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a The synchrotronhigh-energy X-ray diffraction (HEXRD) measurements were conducted atthe Powder Diffraction and Total Scattering Beamline P02.1 of PETRA III atDESY (Proposal No.: I-20191072), a member of the Helmholtz Association(HGF), which is gratefully acknowledged. Dr. Wenwen Song and Dr. Yan
520 _ _ |a The mechanical properties after tempering and intercritical annealing of medium manganese steels with 4 wt% Mn for forging applications are presented. After forging with subsequent air cooling, heat treatments were performed, specifically tempering from 250 and 450 °C and intercritical annealing between 600 and 675 °C. Tensile properties, Charpy V-notch impact toughness, and hardness were determined and compared with microstructural features characterized by metallography and synchrotron measurements, leading to the classification of six different heat treatment stages for medium manganese steels. Furthermore, the effects of different alloying additions (boron 0.0016–0.0057 wt%, molybdenum 0.2 wt%, and aluminum 0.5 wt%) are discussed with respect to the mechanical properties. It is shown that boron increases the impact toughness more effectively in the tempering regime, while the molybdenum alloyed samples exhibit higher toughness after intercritical annealing. Most of the materials and heat treatment states follow the inverse relationship between toughness and strength, while the aluminum alloyed samples show a superior toughness after tempering.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P02.1
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.1-20150101
|6 EXP:(DE-H253)P-P02.1-20150101
|x 0
700 1 _ |a Bleck, Wolfgang
|0 P:(DE-H253)PIP1015377
|b 1
773 _ _ |a 10.1002/srin.202100180
|g Vol. 92, no. 11, p. 2100180 -
|0 PERI:(DE-600)2148555-0
|n 11
|p 2100180
|t Steel research international
|v 92
|y 2021
|x 0177-4832
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/474253/files/steel%20research%20international%20-%202021%20-%20Gramlich%20-%20Tempering%20and%20Intercritical%20Annealing%20of%20Air%25u2010Hardening%204%20wt%20Medium.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/474253/files/steel%20research%20international%20-%202021%20-%20Gramlich%20-%20Tempering%20and%20Intercritical%20Annealing%20of%20Air%25u2010Hardening%204%20wt%20Medium.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:474253
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1015377
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b STEEL RES INT : 2019
|d 2021-01-30
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2021-01-30
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21