000474186 001__ 474186 000474186 005__ 20240110163855.0 000474186 0247_ $$2doi$$a10.1039/D0CP04991C 000474186 0247_ $$2ISSN$$a1463-9076 000474186 0247_ $$2ISSN$$a1463-9084 000474186 0247_ $$2altmetric$$aaltmetric:101633434 000474186 0247_ $$2pmid$$a33876021 000474186 0247_ $$2WOS$$aWOS:000633043800001 000474186 037__ $$aPUBDB-2022-00576 000474186 041__ $$aEnglish 000474186 082__ $$a540 000474186 1001_ $$00000-0002-1157-4611$$aKlacsová, Mária$$b0$$eCorresponding author 000474186 245__ $$aThermodynamic and structural study of DMPC–alkanol systems 000474186 260__ $$aCambridge$$bRSC Publ.$$c2021 000474186 3367_ $$2DRIVER$$aarticle 000474186 3367_ $$2DataCite$$aOutput Types/Journal article 000474186 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645453744_1085 000474186 3367_ $$2BibTeX$$aARTICLE 000474186 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000474186 3367_ $$00$$2EndNote$$aJournal Article 000474186 500__ $$aWaiting for fulltext 000474186 520__ $$aThe thermodynamic and structural behaviors of lamellar dimyristoylphosphatidylcholine-alkanol (abbreviation DMPC–CnOH, n = 8–18 is the even number of carbons in the alkyl chain) systems were studied by using DSC and SAXD/WAXD methods at a 0–0.8 CnOH : DMPC molar ratio range. Up to n ≤ 10 a significant biphasic effect depending on the main transition temperature t$_m$ on the CnOH concentration was observed. Two breakpoints were revealed: turning point (TP), corresponding to the minimum, and threshold concentration (c$_T$), corresponding to the end of the biphasic tendency. These breakpoints were also observed in the alkanol concentration dependent change in the enthalpy of the main transition ΔH$_m$. In the case of CnOHs with n > 10 we propose a marked shift of TP and c$_T$ to very low concentrations; consequently, only increase of tm is observed. A partial phase diagram was constructed for a pseudo-binary DMPC–C12OH system. We suggest a fluid–fluid immiscibility of the DMPC–C12OH system above c$_T$ with a consequent formation of domains with different C12OH contents. At a constant CnOH concentration, the effects of CnOHs on ΔH$_m$ and bilayer repeat distance were found to depend predominantly on the mismatch between CnOH and lipid chain lengths. Observed effects are suggested to be underlined by a counterbalancing effect of interchain van der Waals interactions and headgroup repulsion. 000474186 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0 000474186 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000474186 693__ $$0EXP:(DE-H253)D-A2-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-A2-20150101$$aDORIS III$$fDORIS Beamline A2$$x0 000474186 7001_ $$0P:(DE-H253)PIP1007360$$aBóta, Attila$$b1 000474186 7001_ $$aWesth, Peter$$b2 000474186 7001_ $$0P:(DE-H253)PIP1002601$$aFunari, Sergio de Souza$$b3 000474186 7001_ $$0P:(DE-H253)PIP1008450$$aUhríková, Daniela$$b4 000474186 7001_ $$0P:(DE-H253)PIP1009344$$aBalgavý, Pavol$$b5 000474186 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D0CP04991C$$gVol. 23, no. 14, p. 8598 - 8606$$n14$$p8598 - 8606$$tPhysical chemistry, chemical physics$$v23$$x1463-9076$$y2021 000474186 8564_ $$uhttps://bib-pubdb1.desy.de/record/474186/files/Accepted%20manuscript.pdf$$yRestricted 000474186 8564_ $$uhttps://bib-pubdb1.desy.de/record/474186/files/Final%20article%20PCCP.pdf$$yRestricted 000474186 8564_ $$uhttps://bib-pubdb1.desy.de/record/474186/files/Accepted%20manuscript.pdf?subformat=pdfa$$xpdfa$$yRestricted 000474186 8564_ $$uhttps://bib-pubdb1.desy.de/record/474186/files/Final%20article%20PCCP.pdf?subformat=pdfa$$xpdfa$$yRestricted 000474186 909CO $$ooai:bib-pubdb1.desy.de:474186$$pVDB 000474186 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007360$$aExternal Institute$$b1$$kExtern 000474186 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002601$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY 000474186 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008450$$aExternal Institute$$b4$$kExtern 000474186 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009344$$aExternal Institute$$b5$$kExtern 000474186 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0 000474186 9141_ $$y2021 000474186 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-28$$wger 000474186 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger 000474186 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger 000474186 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28 000474186 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28 000474186 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28 000474186 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28 000474186 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28 000474186 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28 000474186 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28 000474186 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2019$$d2021-01-28 000474186 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28 000474186 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0 000474186 9201_ $$0I:(DE-H253)FS-PETRA-D-20210408$$kFS-PETRA-D$$lPETRA-D$$x1 000474186 980__ $$ajournal 000474186 980__ $$aVDB 000474186 980__ $$aI:(DE-H253)HAS-User-20120731 000474186 980__ $$aI:(DE-H253)FS-PETRA-D-20210408 000474186 980__ $$aUNRESTRICTED