001     474177
005     20220701105045.0
024 7 _ |a 10.1002/cmdc.202000895
|2 doi
024 7 _ |a 1860-7179
|2 ISSN
024 7 _ |a 1860-7187
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-00567
|2 datacite_doi
024 7 _ |a altmetric:99713401
|2 altmetric
024 7 _ |a pmid:33523575
|2 pmid
024 7 _ |a WOS:000630752900001
|2 WOS
037 _ _ |a PUBDB-2022-00567
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kapishnikov, Sergey
|0 0000-0003-2560-054X
|b 0
|e Corresponding author
245 _ _ |a Malaria Pigment Crystals: The Achilles′ Heel of the Malaria Parasite
260 _ _ |a Weinheim [u.a.]
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643026842_4612
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The biogenic formation of hemozoin crystals, a crucial process in heme detoxification by the malaria parasite, is reviewed as an antimalarial drug target. We first focus on the in-vivo formation of hemozoin. A model is presented, based on native-contrast 3D imaging obtained by X-ray and electron microscopy, that hemozoin nucleates at the inner membrane leaflet of the parasitic digestive vacuole, and grows in the adjacent aqueous medium. Having observed quantities of hemoglobin and hemozoin in the digestive vacuole, we present a model that heme liberation from hemoglobin and hemozoin formation is an assembly-line process. The crystallization is preceded by reaction between heme monomers yielding hematin dimers involving fewer types of isomers than in synthetic hemozoin; this is indicative of protein-induced dimerization. Models of antimalarial drugs binding onto hemozoin surfaces are reviewed. This is followed by a description of bromoquine, a chloroquine drug analogue, capping a significant fraction of hemozoin surfaces within the digestive vacuole and accumulation of the drug, presumably a bromoquine–hematin complex, at the vacuole's membrane.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a DORIS III
|f DORIS Beamline BW1
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-BW1-20150101
|6 EXP:(DE-H253)D-BW1-20150101
|x 0
700 1 _ |a Hempelmann, Ernst
|b 1
700 1 _ |a Elbaum, Michael
|b 2
700 1 _ |a Als-Nielsen, Jens
|0 P:(DE-H253)PIP1015857
|b 3
700 1 _ |a Leiserowitz, Leslie
|0 P:(DE-H253)PIP1008223
|b 4
|e Corresponding author
773 _ _ |a 10.1002/cmdc.202000895
|g Vol. 16, no. 10, p. 1515 - 1532
|0 PERI:(DE-600)2209649-8
|n 10
|p 1515 - 1532
|t ChemMedChem
|v 16
|y 2021
|x 1860-7179
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/474177/files/ChemMedChem%20-%202021%20-%20Kapishnikov%20-%20Malaria%20Pigment%20Crystals%20The%20Achilles%20Heel%20of%20the%20Malaria%20Parasite.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/474177/files/ChemMedChem%20-%202021%20-%20Kapishnikov%20-%20Malaria%20Pigment%20Crystals%20The%20Achilles%20Heel%20of%20the%20Malaria%20Parasite.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:474177
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1015857
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1008223
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMMEDCHEM : 2019
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21