000474177 001__ 474177
000474177 005__ 20220701105045.0
000474177 0247_ $$2doi$$a10.1002/cmdc.202000895
000474177 0247_ $$2ISSN$$a1860-7179
000474177 0247_ $$2ISSN$$a1860-7187
000474177 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-00567
000474177 0247_ $$2altmetric$$aaltmetric:99713401
000474177 0247_ $$2pmid$$apmid:33523575
000474177 0247_ $$2WOS$$aWOS:000630752900001
000474177 037__ $$aPUBDB-2022-00567
000474177 041__ $$aEnglish
000474177 082__ $$a610
000474177 1001_ $$00000-0003-2560-054X$$aKapishnikov, Sergey$$b0$$eCorresponding author
000474177 245__ $$aMalaria Pigment Crystals: The Achilles′ Heel of the Malaria Parasite
000474177 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2021
000474177 3367_ $$2DRIVER$$aarticle
000474177 3367_ $$2DataCite$$aOutput Types/Journal article
000474177 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643026842_4612
000474177 3367_ $$2BibTeX$$aARTICLE
000474177 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000474177 3367_ $$00$$2EndNote$$aJournal Article
000474177 520__ $$aThe biogenic formation of hemozoin crystals, a crucial process in heme detoxification by the malaria parasite, is reviewed as an antimalarial drug target. We first focus on the in-vivo formation of hemozoin. A model is presented, based on native-contrast 3D imaging obtained by X-ray and electron microscopy, that hemozoin nucleates at the inner membrane leaflet of the parasitic digestive vacuole, and grows in the adjacent aqueous medium. Having observed quantities of hemoglobin and hemozoin in the digestive vacuole, we present a model that heme liberation from hemoglobin and hemozoin formation is an assembly-line process. The crystallization is preceded by reaction between heme monomers yielding hematin dimers involving fewer types of isomers than in synthetic hemozoin; this is indicative of protein-induced dimerization. Models of antimalarial drugs binding onto hemozoin surfaces are reviewed. This is followed by a description of bromoquine, a chloroquine drug analogue, capping a significant fraction of hemozoin surfaces within the digestive vacuole and accumulation of the drug, presumably a bromoquine–hematin complex, at the vacuole's membrane.
000474177 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000474177 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000474177 693__ $$0EXP:(DE-H253)D-BW1-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-BW1-20150101$$aDORIS III$$fDORIS Beamline BW1$$x0
000474177 7001_ $$aHempelmann, Ernst$$b1
000474177 7001_ $$aElbaum, Michael$$b2
000474177 7001_ $$0P:(DE-H253)PIP1015857$$aAls-Nielsen, Jens$$b3
000474177 7001_ $$0P:(DE-H253)PIP1008223$$aLeiserowitz, Leslie$$b4$$eCorresponding author
000474177 773__ $$0PERI:(DE-600)2209649-8$$a10.1002/cmdc.202000895$$gVol. 16, no. 10, p. 1515 - 1532$$n10$$p1515 - 1532$$tChemMedChem$$v16$$x1860-7179$$y2021
000474177 8564_ $$uhttps://bib-pubdb1.desy.de/record/474177/files/ChemMedChem%20-%202021%20-%20Kapishnikov%20-%20Malaria%20Pigment%20Crystals%20The%20Achilles%20Heel%20of%20the%20Malaria%20Parasite.pdf$$yOpenAccess
000474177 8564_ $$uhttps://bib-pubdb1.desy.de/record/474177/files/ChemMedChem%20-%202021%20-%20Kapishnikov%20-%20Malaria%20Pigment%20Crystals%20The%20Achilles%20Heel%20of%20the%20Malaria%20Parasite.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000474177 909CO $$ooai:bib-pubdb1.desy.de:474177$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000474177 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015857$$aExternal Institute$$b3$$kExtern
000474177 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008223$$aExternal Institute$$b4$$kExtern
000474177 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000474177 9141_ $$y2021
000474177 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000474177 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000474177 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-29
000474177 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000474177 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMMEDCHEM : 2019$$d2021-01-29
000474177 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000474177 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000474177 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-29
000474177 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000474177 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000474177 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000474177 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000474177 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-29
000474177 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000474177 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000474177 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000474177 980__ $$ajournal
000474177 980__ $$aVDB
000474177 980__ $$aUNRESTRICTED
000474177 980__ $$aI:(DE-H253)HAS-User-20120731
000474177 9801_ $$aFullTexts