001     474132
005     20250716150742.0
024 7 _ |a 10.1021/acschembio.1c00398
|2 doi
024 7 _ |a 1554-8929
|2 ISSN
024 7 _ |a 1554-8937
|2 ISSN
024 7 _ |a altmetric:112815743
|2 altmetric
024 7 _ |a pmid:34477366
|2 pmid
024 7 _ |a WOS:000697343400008
|2 WOS
024 7 _ |2 openalex
|a openalex:W3198906913
037 _ _ |a PUBDB-2022-00522
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Mojr, Viktor
|b 0
245 _ _ |a Nonhydrolysable Analogues of (p)ppGpp and (p)ppApp Alarmone Nucleotides as Novel Molecular Tools
260 _ _ |a Washington, DC
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1672837244_24597
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a While alarmone nucleotides guanosine-3′,5′-bisdiphosphate (ppGpp) and guanosine-5′-triphosphate-3′-diphosphate (pppGpp) are archetypical bacterial second messengers, their adenosine analogues ppApp (adenosine-3′,5′-bisdiphosphate) and pppApp (adenosine-5′-triphosphate-3′-diphosphate) are toxic effectors that abrogate bacterial growth. The alarmones are both synthesized and degraded by the members of the RelA-SpoT Homologue (RSH) enzyme family. Because of the chemical and enzymatic liability of (p)ppGpp and (p)ppApp, these alarmones are prone to degradation during structural biology experiments. To overcome this limitation, we have established an efficient and straightforward procedure for synthesizing nonhydrolysable (p)ppNuNpp analogues starting from 3′-azido-3′-deoxyribonucleotides as key intermediates. To demonstrate the utility of (p)ppGNpp as a molecular tool, we show that (i) as an HD substrate mimic, ppGNpp competes with ppGpp to inhibit the enzymatic activity of human MESH1 Small Alarmone Hyrolase, SAH; and (ii) mimicking the allosteric effects of (p)ppGpp, (p)ppGNpp acts as a positive regulator of the synthetase activity of long ribosome-associated RSHs Rel and RelA. Finally, by solving the structure of the N-terminal domain region (NTD) of T. thermophilus Rel complexed with pppGNpp, we show that as an HD substrate mimic, the analogue serves as a bona fide orthosteric regulator that promotes the same intra-NTD structural rearrangements as the native substrate.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Roghanian, Mohammad
|b 1
700 1 _ |a Tamman, Hedvig
|b 2
700 1 _ |a Do Pham, Duy Dinh
|b 3
700 1 _ |a Petrová, Magdalena
|b 4
700 1 _ |a Pohl, Radek
|b 5
700 1 _ |a Takada, Hiraku
|b 6
700 1 _ |a Van Nerom, Katleen
|b 7
700 1 _ |a Ainelo, Hanna
|b 8
700 1 _ |a Caballero-Montes, Julien
|b 9
700 1 _ |a Jimmy, Steffi
|0 P:(DE-H253)PIP1096636
|b 10
700 1 _ |a Garcia-Pino, Abel
|0 P:(DE-H253)PIP1018533
|b 11
|e Corresponding author
700 1 _ |a Hauryliuk, Vasili
|0 P:(DE-H253)PIP1095158
|b 12
|e Corresponding author
700 1 _ |a Rejman, Dominik
|0 P:(DE-HGF)0
|b 13
|e Corresponding author
773 _ _ |a 10.1021/acschembio.1c00398
|g Vol. 16, no. 9, p. 1680 - 1691
|0 PERI:(DE-600)2221735-6
|n 9
|p 1680 - 1691
|t ACS chemical biology
|v 16
|y 2021
|x 1554-8929
856 4 _ |u https://bib-pubdb1.desy.de/record/474132/files/acschembio.1c00398.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/474132/files/acschembio.1c00398.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:bib-pubdb1.desy.de:474132
|p VDB
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1096636
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 10
|6 P:(DE-H253)PIP1096636
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 11
|6 P:(DE-H253)PIP1018533
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1018533
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 12
|6 P:(DE-H253)PIP1095158
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1095158
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CHEM BIOL : 2019
|d 2021-02-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-04
920 1 _ |0 I:(DE-H253)CSSB-DESY-HS-20210521
|k CSSB-DESY-HS
|l Strukturelle Mikrobiologie CSSB
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)CSSB-DESY-HS-20210521
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21