000474095 001__ 474095
000474095 005__ 20250724180151.0
000474095 0247_ $$2doi$$a10.1016/j.jcp.2021.110527
000474095 0247_ $$2INSPIRETeX$$aHartung:2020nci
000474095 0247_ $$2inspire$$ainspire:1829538
000474095 0247_ $$2ISSN$$a0021-9991
000474095 0247_ $$2ISSN$$a1090-2716
000474095 0247_ $$2arXiv$$aarXiv:2011.05451
000474095 0247_ $$2altmetric$$aaltmetric:94124945
000474095 0247_ $$2WOS$$aWOS:000687221100007
000474095 0247_ $$2openalex$$aopenalex:W3100799851
000474095 037__ $$aPUBDB-2022-00513
000474095 041__ $$aEnglish
000474095 082__ $$a000
000474095 088__ $$2arXiv$$aarXiv:2011.05451
000474095 088__ $$2DESY$$aDESY-20-209
000474095 1001_ $$0P:(DE-H253)PIP1019423$$aHartung, Tobias$$b0$$eCorresponding author$$udesy
000474095 245__ $$aLattice meets lattice: Application of lattice cubature to models in lattice gauge theory
000474095 260__ $$aAmsterdam$$bElsevier$$c2021
000474095 3367_ $$2DRIVER$$aarticle
000474095 3367_ $$2DataCite$$aOutput Types/Journal article
000474095 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643796726_24995
000474095 3367_ $$2BibTeX$$aARTICLE
000474095 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000474095 3367_ $$00$$2EndNote$$aJournal Article
000474095 500__ $$aJournal of Computational Physics Volume 443, 15 October 2021, 110527VOLLTEXT angefragt  Waiting for fulltext
000474095 520__ $$a•Recursive integration strategies independent of the number of integration variables are proposed.•We show lattice based cubature methods that can improve certain integrals occurring in physics.•We show FFT based methods to efficiently calculate certain integrals occurring in physics. High dimensional integrals are abundant in many fields of research including quantum physics. The aim of this paper is to develop efficient recursive strategies to tackle a class of high dimensional integrals having a special product structure with low order couplings, motivated by models in lattice gauge theory from quantum field theory. A novel element of this work is the potential benefit in using lattice cubature rules. The group structure within lattice rules combined with the special structure in the physics integrands may allow efficient computations based on Fast Fourier Transforms. Applications to the quantum mechanical rotor and compact U(1) lattice gauge theory in two and three dimensions are considered.
000474095 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000474095 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000474095 650_7 $$2INSPIRE$$adimension: 3
000474095 650_7 $$2INSPIRE$$alattice
000474095 650_7 $$2INSPIRE$$alattice field theory
000474095 650_7 $$2INSPIRE$$aFourier transformation
000474095 650_7 $$2INSPIRE$$afield theory
000474095 650_7 $$2INSPIRE$$aquantum mechanics
000474095 650_7 $$2INSPIRE$$aU(1)
000474095 650_7 $$2autogen$$aLattice cubature
000474095 650_7 $$2autogen$$aQuasi-Monte Carlo
000474095 650_7 $$2autogen$$aRecursive integration
000474095 650_7 $$2autogen$$aLattice gauge theory
000474095 650_7 $$2autogen$$aQuantum physics
000474095 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000474095 7001_ $$0P:(DE-H253)PIP1003636$$aJansen, Karl$$b1
000474095 7001_ $$0C.C.Kuo.2$$aKuo, Frances Y.$$b2
000474095 7001_ $$0H.Leovey.2$$aLeövey, Hernan$$b3
000474095 7001_ $$0D.Nuyens.1$$aNuyens, Dirk$$b4
000474095 7001_ $$0INSPIRE-00015913$$aSloan, Ian H.$$b5
000474095 773__ $$0PERI:(DE-600)1469164-4$$a10.1016/j.jcp.2021.110527$$gVol. 443, p. 110527 -$$p110527$$tJournal of computational physics$$v443$$x0021-9991$$y2021
000474095 7870_ $$0PUBDB-2021-04262$$aHartung, Tobias et.al.$$d2020$$iIsParent$$rarXiv:2011.05451 ; DESY-20-209$$tLattice meets lattice: Application of lattice cubature to models in lattice gauge theory
000474095 8564_ $$uhttps://bib-pubdb1.desy.de/record/474095/files/2011.05451v2%281%29.pdf$$yRestricted
000474095 8564_ $$uhttps://bib-pubdb1.desy.de/record/474095/files/2011.05451v2%281%29.pdf?subformat=pdfa$$xpdfa$$yRestricted
000474095 909CO $$ooai:bib-pubdb1.desy.de:474095$$pVDB
000474095 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019423$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000474095 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003636$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000474095 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000474095 9141_ $$y2021
000474095 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000474095 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000474095 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000474095 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000474095 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000474095 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000474095 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000474095 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ COMPUT PHYS : 2019$$d2021-01-27
000474095 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000474095 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000474095 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000474095 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000474095 9201_ $$0I:(DE-H253)Z_ZPPT-20210408$$kZ_ZPPT$$lZeuthen Particle PhysicsTheory$$x0
000474095 980__ $$ajournal
000474095 980__ $$aVDB
000474095 980__ $$aI:(DE-H253)Z_ZPPT-20210408
000474095 980__ $$aUNRESTRICTED