000473934 001__ 473934
000473934 005__ 20250724151343.0
000473934 0247_ $$2doi$$a10.1111/jace.18166
000473934 0247_ $$2ISSN$$a0002-7820
000473934 0247_ $$2ISSN$$a1551-2916
000473934 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-00352
000473934 0247_ $$2WOS$$aWOS:000710191700001
000473934 0247_ $$2openalex$$aopenalex:W3201680734
000473934 037__ $$aPUBDB-2022-00352
000473934 041__ $$aEnglish
000473934 082__ $$a660
000473934 1001_ $$0P:(DE-H253)PIP1012370$$aAlderman, Oliver$$b0$$eCorresponding author
000473934 245__ $$aStructural origin of the weak germanate anomaly in lead germanate glass properties
000473934 260__ $$aWesterville, Ohio$$bSoc.$$c2022
000473934 3367_ $$2DRIVER$$aarticle
000473934 3367_ $$2DataCite$$aOutput Types/Journal article
000473934 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643207603_26561
000473934 3367_ $$2BibTeX$$aARTICLE
000473934 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000473934 3367_ $$00$$2EndNote$$aJournal Article
000473934 520__ $$aBinary PbO–GeO$_2$ glasses have been studied in detail from 5 to 75 mol% PbO using high-resolution neutron diffraction, high-energy X-ray diffraction, 207-Pb NMR, pycnometry, and thermal analysis. The Ge–O coordination number displays a broad maximum nGeO = 4.14(3) close to 27 mol% PbO. This is smaller than the maximum nGeO = 4.3 reported in CaO–GeO$_2$ glasses but occurs at a similar composition. This structural behavior appears to explain the relatively weak germanate anomaly manifest in lead germanate glasses, for example as a maximum in the measured atom number density and a plateau in the glass transition temperatures. The structural role of Pb(II) is complex. On the one hand, short covalent Pb–O bonds and small Pb–O coordination numbers of ∼3 to 4 indicate glass network former character for Pb(II), associated with a stereochemically active electron lone pair. On the other hand, the presence of some GeO$_5$ or GeO$_6$ units, in addition to the majority GeO$_4$ tetrahedral species, indicates some modifier character of Pb(II) at low PbO contents, giving rise to the observed weak germanate anomaly, as well as elongation and enhanced ionicity of the Pb–O bonds. Overall, the observed structural behavior of Pb(II) in lead germanate glasses appears as intermediate between that observed in lead silicate and lead borate glasses. Despite rapid quenching, at low PbO contents, the glasses studied exhibited nanoscale heterogeneity, evidenced by small-angle X-ray scattering consistent with the early stages of spinodal decomposition.
000473934 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000473934 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000473934 693__ $$0EXP:(DE-H253)D-BW5-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-BW5-20150101$$aDORIS III$$fDORIS Beamline BW5$$x0
000473934 7001_ $$0P:(DE-H253)PIP1012057$$aHannon, Alex$$b1$$eCorresponding author
000473934 7001_ $$aHolland, Diane$$b2
000473934 7001_ $$aDupree, Ray$$b3
000473934 7001_ $$aFeller, Steve$$b4
000473934 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.18166$$gVol. 105, no. 2, p. 1010 - 1030$$n2$$p1010 - 1030$$tJournal of the American Ceramic Society$$v105$$x0002-7820$$y2022
000473934 8564_ $$uhttps://bib-pubdb1.desy.de/record/473934/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202021%20-%20Alderman%20-%20Structural%20origin%20of%20the%20weak%20germanate%20anomaly%20in%20lead.pdf$$yOpenAccess
000473934 8564_ $$uhttps://bib-pubdb1.desy.de/record/473934/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202021%20-%20Alderman%20-%20Structural%20origin%20of%20the%20weak%20germanate%20anomaly%20in%20lead.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000473934 909CO $$ooai:bib-pubdb1.desy.de:473934$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000473934 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1012370$$aExternal Institute$$b0$$kExtern
000473934 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1012057$$aExternal Institute$$b1$$kExtern
000473934 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000473934 9141_ $$y2022
000473934 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000473934 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000473934 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000473934 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000473934 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000473934 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2019$$d2021-01-27
000473934 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000473934 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000473934 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000473934 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000473934 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000473934 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000473934 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000473934 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000473934 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000473934 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000473934 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000473934 980__ $$ajournal
000473934 980__ $$aVDB
000473934 980__ $$aUNRESTRICTED
000473934 980__ $$aI:(DE-H253)HAS-User-20120731
000473934 9801_ $$aFullTexts