| Home > Publications database > Resolving physical interactions between bacteria and nanotopographies with focused ion beam scanning electron microscopy > print |
| 001 | 473889 | ||
| 005 | 20250716150533.0 | ||
| 024 | 7 | _ | |a 10.1016/j.isci.2021.102818 |2 doi |
| 024 | 7 | _ | |a 10.3204/PUBDB-2022-00331 |2 datacite_doi |
| 024 | 7 | _ | |a altmetric:110041831 |2 altmetric |
| 024 | 7 | _ | |a pmid:34355148 |2 pmid |
| 024 | 7 | _ | |a WOS:000677580600110 |2 WOS |
| 024 | 7 | _ | |2 openalex |a openalex:W3178280960 |
| 037 | _ | _ | |a PUBDB-2022-00331 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 050 |
| 100 | 1 | _ | |a Jenkins, Joshua |0 P:(DE-H253)PIP1085257 |b 0 |
| 245 | _ | _ | |a Resolving physical interactions between bacteria and nanotopographies with focused ion beam scanning electron microscopy |
| 260 | _ | _ | |a St. Louis |c 2021 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1643724579_9389 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a To robustly assess the antibacterial mechanisms of nanotopographies, it is critical to analyze the bacteria-nanotopography adhesion interface. Here, we utilize focused ion beam milling combined with scanning electron microscopy to generate three-dimensional reconstructions of Staphylococcus aureus or Escherichia coli interacting with nanotopographies. For the first time, 3D morphometric analysis has been exploited to quantify the intrinsic contact area between each nanostructure and the bacterial envelope, providing an objective framework from which to derive the possible antibacterial mechanisms of synthetic nanotopographies. Surfaces with nanostructure densities between 36 and 58 per μm2 and tip diameters between 27 and 50 nm mediated envelope deformation and penetration, while surfaces with higher nanostructure densities (137 per μm2) induced envelope penetration and mechanical rupture, leading to marked reductions in cell volume due to cytosolic leakage. On nanotopographies with densities of 8 per μm2 and tip diameters greater than 100 nm, bacteria predominantly adhered between nanostructures, resulting in cell impedance. |
| 536 | _ | _ | |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633) |0 G:(DE-HGF)POF4-633 |c POF4-633 |f POF IV |x 0 |
| 536 | _ | _ | |a NFFA-Europe_supported - Technically supported by Nanoscience Foundries and Fine Analysis Europe (2020_Join2-NFFA-Europe_funded) |0 G:(DE-HGF)2020_Join2-NFFA-Europe_funded |c 2020_Join2-NFFA-Europe_funded |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |a Nanolab |e DESY NanoLab: Microscopy |1 EXP:(DE-H253)DESY-NanoLab-20150101 |0 EXP:(DE-H253)Nanolab-04-20150101 |5 EXP:(DE-H253)Nanolab-04-20150101 |x 0 |
| 700 | 1 | _ | |a Ishak, Mohd I. |b 1 |
| 700 | 1 | _ | |a Eales, Marcus |b 2 |
| 700 | 1 | _ | |a Gholinia, Ali |b 3 |
| 700 | 1 | _ | |a Kulkarni, Satishkumar |0 P:(DE-H253)PIP1025923 |b 4 |
| 700 | 1 | _ | |a Keller, Thomas F. |0 P:(DE-H253)PIP1019138 |b 5 |
| 700 | 1 | _ | |a May, Paul W. |b 6 |
| 700 | 1 | _ | |a Nobbs, Angela H. |b 7 |
| 700 | 1 | _ | |a Su, Bo |0 P:(DE-H253)PIP1084166 |b 8 |e Corresponding author |
| 773 | _ | _ | |a 10.1016/j.isci.2021.102818 |g Vol. 24, no. 7, p. 102818 - |0 PERI:(DE-600)2927064-9 |n 7 |p 102818 |t iScience |v 24 |y 2021 |x 2589-0042 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/473889/files/1-s2.0-S2589004221007860-main.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/473889/files/1-s2.0-S2589004221007860-main.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:473889 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1085257 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1025923 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1019138 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 5 |6 P:(DE-H253)PIP1019138 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1084166 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l From Matter to Materials and Life |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-633 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Life Sciences – Building Blocks of Life: Structure and Function |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-06-15 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-06-15 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-06-15 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ISCIENCE : 2019 |d 2021-06-15 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-06-15 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-06-15 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-06-15 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-06-15 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-06-15 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-06-15 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-06-15 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-06-15 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-06-15 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-06-15 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-06-15 |
| 920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-NL-20120731 |k FS-NL |l Nanolab |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
| 980 | _ | _ | |a I:(DE-H253)FS-NL-20120731 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|