001     473734
005     20250724180018.0
024 7 _ |a 10.1039/D0CE01672A
|2 doi
024 7 _ |a 10.3204/PUBDB-2022-00214
|2 datacite_doi
024 7 _ |a altmetric:97613648
|2 altmetric
024 7 _ |a WOS:000623435900009
|2 WOS
024 7 _ |a openalex:W3120325356
|2 openalex
037 _ _ |a PUBDB-2022-00214
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Renier, Olivier
|0 0000-0002-1227-547X
|b 0
245 _ _ |a Developing design tools for introducing and tuning structural order in ionic liquids
260 _ _ |a London
|c 2021
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642424954_8211
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ionic liquids (ILs) are receiving growing interest as highly tunable, multifunctional materials. Remarkably for liquids, they tend to display a high level of structural order. This structural order may even lead to the formation of mesophases such as liquid crystals (LCs). Imidazolium compounds are by far the most popular ILs, because they offer a widely versatile platform for property tuning. To investigate what is driving structural order in imidazolium-based ILs a series of asymmetrical 1-dodecyl-2-methyl-3-alkylimidazolium bromides, [C$_{12}$C$_1$C$_n$im][Br] with n = 0–12 have been synthesized, fully characterized and their structures and properties compared with the analogous 1-dodecyl-3-alkylimidazolium as well as the 1,2,3-triazolium bromides. The aim is to examine the influence of the replacement of the most acidic 2-H proton on the imidazolium head group by methylation on the properties and structure of ILs. For all compounds, except for compounds with butyl- and hexyl-chains as well as the protonated species, mesophase formation can be observed. Obviously, the simple presence of long alkyl chains such as dodecyl (a design concept frequently put forward in the literature) is not sufficient to support mesophase formation alone. Rather, for the formation of a liquid crystalline phase, a balance between attractive van der Waals forces, hydrogen bonds, and electrostatic interactions is required. Data from temperature-dependent small-angle X-ray scattering (SAXS) and polarizing optical microscopy (POM) suggest three different cation conformations for the studied [C$_{12}$C$_1$C$_n$im][Br]: cations with 0 ≤ n ≤ 4 exhibit a near-linear conformation; for 5 ≤ n ≤ 10 a V-shape is adopted, and for n = 11 or 12 a U-shape is found. We demonstrated that the structural possibility for an interdigitation of the long chains is an influential factor for the formation of a mesophase.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20100011 (I-20100011)
|0 G:(DE-H253)I-20100011
|c I-20100011
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a DORIS III
|f DORIS Beamline A2
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-A2-20150101
|6 EXP:(DE-H253)D-A2-20150101
|x 0
693 _ _ |a DORIS III
|f DORIS Beamline BW4
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-BW4-20150101
|6 EXP:(DE-H253)D-BW4-20150101
|x 1
700 1 _ |a Bousrez, Guillaume
|0 0000-0002-0265-7431
|b 1
700 1 _ |a Yang, Mei
|b 2
700 1 _ |a Hölter, Milena
|b 3
700 1 _ |a Mallick, Bert
|b 4
700 1 _ |a Smetana, Volodymyr
|0 0000-0003-0763-1457
|b 5
700 1 _ |a Mudring, Anja-Verena
|0 P:(DE-H253)PIP1010531
|b 6
|e Corresponding author
773 _ _ |a 10.1039/D0CE01672A
|g Vol. 23, no. 8, p. 1785 - 1795
|0 PERI:(DE-600)2025075-7
|n 8
|p 1785 - 1795
|t CrystEngComm
|v 23
|y 2021
|x 1466-8033
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/473734/files/d0ce01672a.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/473734/files/d0ce01672a.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:473734
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1010531
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CRYSTENGCOMM : 2019
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21