001     473575
005     20250715175649.0
024 7 _ |a 10.1088/1361-648X/ac4d5a
|2 doi
024 7 _ |a 10.3204/PUBDB-2022-00129
|2 datacite_doi
024 7 _ |a altmetric:121335486
|2 altmetric
024 7 _ |a pmid:35051906
|2 pmid
024 7 _ |a WOS:000759141700001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4226147507
037 _ _ |a PUBDB-2022-00129
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Creutzburg, Marcus
|0 P:(DE-H253)PIP1017841
|b 0
245 _ _ |a Surface Structure of Magnetite (111) under Oxidizing and Reducing Conditions
260 _ _ |a Bristol
|c 2022
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1645709927_2261
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report on differences in the magnetite (111) surface structure when prepared under oxidizing and reducing conditions. Both preparations were done under UHV conditions at elevated temperatures, but in one case the sample was cooled down while keeping it in an oxygen atmosphere. Scanning tunneling microscopy after each of the preparations showed a different apparent morphology, which is discussed to be an electronic effect and which is reflected in the necessity of using opposite bias tunneling voltages in order to obtain good images. Surface x-ray diffraction revealed that both preparations lead to Fe vacancies, leading to local O-terminations, the relative fraction of which depending on the preparation. The preparation under reducing conditions lead to a larger fraction of Fe-termination. The geometric structure of the two different terminations was found to be identical for both treatments, even though the surface and near-surface regions exhibit small compositional differences; after the oxidizing treatment they are iron deficient. Further evidence for the dependence of iron vs oxygen fractional surface terminations on preparation conditions comes from Fourier transform infrared reflection-absorption spectroscopy, which is used to study the adsorption of formic acid. These molecules dissociate and adsorb in chelating and bidentate bridging geometries on the Fe-terminated areas and the signal of typical infrared absorption bands is stronger after the preparation under reducing conditions, which results in a higher fraction of Fe-termination. The adsorption of formic acid induced an atomic roughening of the magnetite (111) surface which we conclude from the quantitative analysis of the crystal truncation rod data. The roughening process is initiated by atomic hydrogen, which results from the dissociation of formic acid after its adsorption on the surface. Atomic hydrogen adsorbs at surface oxygen and after recombination with another H this surface hydroxyl can form H2O, which may desorb from the surface, while iron ions diffuse into interstitial sites in the bulk.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|x 0
|f POF IV
536 _ _ |a SFB 986 A07 - Adsorption organischer Säuren auf Oxidoberflächen und Nanostrukturen (A07) (318017425)
|0 G:(GEPRIS)318017425
|c 318017425
|x 1
536 _ _ |a SFB 986 A04 - Ab-initio basierte Modellierung der elektronischen und mechanischen Eigenschaften von Hybrid-Grenzflächen (A04) (221132808)
|0 G:(GEPRIS)221132808
|c 221132808
|x 2
693 _ _ |a Nanolab
|e DESY NanoLab: Sample Preparation
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-01-20150101
|5 EXP:(DE-H253)Nanolab-01-20150101
|x 0
693 _ _ |a Nanolab
|e DESY NanoLab: Surface Spectroscopy
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-02-20150101
|5 EXP:(DE-H253)Nanolab-02-20150101
|x 1
693 _ _ |a Nanolab
|e DESY NanoLab: Microscopy
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-04-20150101
|5 EXP:(DE-H253)Nanolab-04-20150101
|x 2
700 1 _ |a Kellschopp, Kai
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gleissner, Robert
|0 P:(DE-H253)PIP1031867
|b 2
700 1 _ |a Arndt, Bjoern
|0 P:(DE-H253)PIP1019785
|b 3
700 1 _ |a Vonbun-Feldbauer, Gregor
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Vonk, Vedran
|0 P:(DE-H253)PIP1013931
|b 5
700 1 _ |a Noei, Heshmat
|0 P:(DE-H253)PIP1018647
|b 6
700 1 _ |a Stierle, Andreas
|0 P:(DE-H253)PIP1012873
|b 7
|e Corresponding author
770 _ _ |a Physical and Chemical Properties of Reducible Oxides
773 _ _ |a 10.1088/1361-648X/ac4d5a
|0 PERI:(DE-600)1472968-4
|n 16
|p 164003
|t Journal of physics / Condensed matter
|v 34
|y 2022
|x 0953-8984
856 4 _ |u https://iopscience.iop.org/article/10.1088/1361-648X/ac4d5a
856 4 _ |u https://bib-pubdb1.desy.de/record/473575/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/473575/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/473575/files/Creutzburg_2022_J._Phys.%20_Condens._Matter_34_164003.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/473575/files/Creutzburg_2022_J._Phys.%20_Condens._Matter_34_164003.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:473575
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1017841
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1031867
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1019785
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1013931
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1013931
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1018647
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1012873
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 7
|6 P:(DE-H253)PIP1012873
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS-CONDENS MAT : 2019
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a TIB: IOP Publishing 2022
|2 APC
|0 PC:(DE-HGF)0107
920 1 _ |0 I:(DE-H253)FS-NL-20120731
|k FS-NL
|l Nanolab
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-NL-20120731
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21