000473575 001__ 473575
000473575 005__ 20250715175649.0
000473575 0247_ $$2doi$$a10.1088/1361-648X/ac4d5a
000473575 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-00129
000473575 0247_ $$2altmetric$$aaltmetric:121335486
000473575 0247_ $$2pmid$$apmid:35051906
000473575 0247_ $$2WOS$$aWOS:000759141700001
000473575 0247_ $$2openalex$$aopenalex:W4226147507
000473575 037__ $$aPUBDB-2022-00129
000473575 041__ $$aEnglish
000473575 082__ $$a530
000473575 1001_ $$0P:(DE-H253)PIP1017841$$aCreutzburg, Marcus$$b0
000473575 245__ $$aSurface Structure of Magnetite (111) under Oxidizing and Reducing Conditions
000473575 260__ $$aBristol$$bIOP Publ.$$c2022
000473575 3367_ $$2DRIVER$$aarticle
000473575 3367_ $$2DataCite$$aOutput Types/Journal article
000473575 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645709927_2261
000473575 3367_ $$2BibTeX$$aARTICLE
000473575 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000473575 3367_ $$00$$2EndNote$$aJournal Article
000473575 520__ $$aWe report on differences in the magnetite (111) surface structure when prepared under oxidizing and reducing conditions. Both preparations were done under UHV conditions at elevated temperatures, but in one case the sample was cooled down while keeping it in an oxygen atmosphere. Scanning tunneling microscopy after each of the preparations showed a different apparent morphology, which is discussed to be an electronic effect and which is reflected in the necessity of using opposite bias tunneling voltages in order to obtain good images. Surface x-ray diffraction revealed that both preparations lead to Fe vacancies, leading to local O-terminations, the relative fraction of which depending on the preparation. The preparation under reducing conditions lead to a larger fraction of Fe-termination. The geometric structure of the two different terminations was found to be identical for both treatments, even though the surface and near-surface regions exhibit small compositional differences; after the oxidizing treatment they are iron deficient. Further evidence for the dependence of iron vs oxygen fractional surface terminations on preparation conditions comes from Fourier transform infrared reflection-absorption spectroscopy, which is used to study the adsorption of formic acid. These molecules dissociate and adsorb in chelating and bidentate bridging geometries on the Fe-terminated areas and the signal of typical infrared absorption bands is stronger after the preparation under reducing conditions, which results in a higher fraction of Fe-termination. The adsorption of formic acid induced an atomic roughening of the magnetite (111) surface which we conclude from the quantitative analysis of the crystal truncation rod data. The roughening process is initiated by atomic hydrogen, which results from the dissociation of formic acid after its adsorption on the surface. Atomic hydrogen adsorbs at surface oxygen and after recombination with another H this surface hydroxyl can form H2O, which may desorb from the surface, while iron ions diffuse into interstitial sites in the bulk.
000473575 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000473575 536__ $$0G:(GEPRIS)318017425$$aSFB 986 A07 - Adsorption organischer Säuren auf Oxidoberflächen und Nanostrukturen (A07) (318017425)$$c318017425$$x1
000473575 536__ $$0G:(GEPRIS)221132808$$aSFB 986 A04 - Ab-initio basierte Modellierung der elektronischen und mechanischen Eigenschaften von Hybrid-Grenzflächen (A04) (221132808)$$c221132808$$x2
000473575 693__ $$0EXP:(DE-H253)Nanolab-01-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-01-20150101$$aNanolab$$eDESY NanoLab: Sample Preparation$$x0
000473575 693__ $$0EXP:(DE-H253)Nanolab-02-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-02-20150101$$aNanolab$$eDESY NanoLab: Surface Spectroscopy$$x1
000473575 693__ $$0EXP:(DE-H253)Nanolab-04-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-04-20150101$$aNanolab$$eDESY NanoLab: Microscopy$$x2
000473575 7001_ $$0P:(DE-HGF)0$$aKellschopp, Kai$$b1
000473575 7001_ $$0P:(DE-H253)PIP1031867$$aGleissner, Robert$$b2
000473575 7001_ $$0P:(DE-H253)PIP1019785$$aArndt, Bjoern$$b3
000473575 7001_ $$0P:(DE-HGF)0$$aVonbun-Feldbauer, Gregor$$b4
000473575 7001_ $$0P:(DE-H253)PIP1013931$$aVonk, Vedran$$b5
000473575 7001_ $$0P:(DE-H253)PIP1018647$$aNoei, Heshmat$$b6
000473575 7001_ $$0P:(DE-H253)PIP1012873$$aStierle, Andreas$$b7$$eCorresponding author
000473575 770__ $$aPhysical and Chemical Properties of Reducible Oxides
000473575 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/ac4d5a$$n16$$p164003$$tJournal of physics / Condensed matter$$v34$$x0953-8984$$y2022
000473575 8564_ $$uhttps://iopscience.iop.org/article/10.1088/1361-648X/ac4d5a
000473575 8564_ $$uhttps://bib-pubdb1.desy.de/record/473575/files/HTML-Approval_of_scientific_publication.html
000473575 8564_ $$uhttps://bib-pubdb1.desy.de/record/473575/files/PDF-Approval_of_scientific_publication.pdf
000473575 8564_ $$uhttps://bib-pubdb1.desy.de/record/473575/files/Creutzburg_2022_J._Phys.%20_Condens._Matter_34_164003.pdf$$yOpenAccess
000473575 8564_ $$uhttps://bib-pubdb1.desy.de/record/473575/files/Creutzburg_2022_J._Phys.%20_Condens._Matter_34_164003.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000473575 8767_ $$92022$$aTODO$$d2023-02-13$$eHybrid-OA$$jPublish and Read$$lIOP$$zQ2-2022
000473575 909CO $$ooai:bib-pubdb1.desy.de:473575$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000473575 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1017841$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000473575 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1031867$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000473575 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1019785$$aExternal Institute$$b3$$kExtern
000473575 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013931$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000473575 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1013931$$aEuropean XFEL$$b5$$kXFEL.EU
000473575 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1018647$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000473575 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012873$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000473575 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1012873$$aEuropean XFEL$$b7$$kXFEL.EU
000473575 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000473575 9141_ $$y2022
000473575 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000473575 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000473575 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-03
000473575 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000473575 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2019$$d2021-02-03
000473575 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000473575 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000473575 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000473575 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000473575 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000473575 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-02-03$$wger
000473575 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000473575 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000473575 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000473575 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000473575 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000473575 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000473575 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
000473575 9201_ $$0I:(DE-H253)FS-NL-20120731$$kFS-NL$$lNanolab$$x0
000473575 9801_ $$aFullTexts
000473575 980__ $$ajournal
000473575 980__ $$aVDB
000473575 980__ $$aUNRESTRICTED
000473575 980__ $$aI:(DE-H253)FS-NL-20120731
000473575 980__ $$aAPC