000473285 001__ 473285
000473285 005__ 20250716150426.0
000473285 0247_ $$2doi$$a10.1007/JHEP06(2021)133
000473285 0247_ $$2INSPIRETeX$$aCapdevilla:2021fmj
000473285 0247_ $$2inspire$$ainspire:1848034
000473285 0247_ $$2ISSN$$a1029-8479
000473285 0247_ $$2ISSN$$a1126-6708
000473285 0247_ $$2ISSN$$a1127-2236
000473285 0247_ $$2arXiv$$aarXiv:2102.11292
000473285 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-05615
000473285 0247_ $$2altmetric$$aaltmetric:100733877
000473285 0247_ $$2WOS$$aWOS:000665787500001
000473285 0247_ $$2openalex$$aopenalex:W3175222932
000473285 037__ $$aPUBDB-2021-05615
000473285 041__ $$aEnglish
000473285 082__ $$a530
000473285 088__ $$2arXiv$$aarXiv:2102.11292
000473285 088__ $$2DESY$$aDESY-21-019
000473285 088__ $$2Other$$aIFIC/21-03
000473285 1001_ $$0Rodolfo.M.Capdevilla.1$$aCapdevilla, Rodolfo$$b0
000473285 245__ $$aHunting wino and higgsino dark matter at the muon collider with disappearing tracks
000473285 260__ $$a[Trieste]$$bSISSA$$c2021
000473285 3367_ $$2DRIVER$$aarticle
000473285 3367_ $$2DataCite$$aOutput Types/Journal article
000473285 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1675687935_15720
000473285 3367_ $$2BibTeX$$aARTICLE
000473285 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000473285 3367_ $$00$$2EndNote$$aJournal Article
000473285 500__ $$a32 pages, 17 figures, 3 tables
000473285 520__ $$aWe study the capabilities of a muon collider experiment to detect disappearing tracks originating when a heavy and electrically charged long-lived particle decays via X$^{+}$→ Y$^{+}$Z$^{0}$, where X$^{+}$ and Z$^{0}$ are two almost mass degenerate new states and Y$^{+}$ is a charged Standard Model particle. The backgrounds induced by the in-flight decays of the muon beams (BIB) can create detector hit combinations that mimic long-lived particle signatures, making the search a daunting task. We design a simple strategy to tame the BIB, based on a detector-hit-level selection exploiting timing information and hit-to-hit correlations, followed by simple requirements on the quality of reconstructed tracks. Our strategy allows us to reduce the number of tracks from BIB to an average of 0.08 per event, hence being able to design a cut-and-count analysis that shows that it is possible to cover weak doublets and triplets with masses close to $ \sqrt{s}/2 $ in the 0.1–10 ns range. In particular, this implies that a 10 TeV muon collider is able to probe thermal MSSM higgsinos and thermal MSSM winos, thus rivaling the FCC-hh in that respect, and further enlarging the physics program of the muon collider into the territory of WIMP dark matter and long-lived signatures. We also provide parton-to-reconstructed level efficiency maps, allowing an estimation of the coverage of disappearing tracks at muon colliders for arbitrary models.
000473285 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000473285 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000473285 650_7 $$2INSPIRE$$anew physics
000473285 650_7 $$2INSPIRE$$asupersymmetry: dark matter
000473285 650_7 $$2INSPIRE$$aminimal supersymmetric standard model
000473285 650_7 $$2INSPIRE$$amuon: storage ring
000473285 650_7 $$2INSPIRE$$amuon+ muon-
000473285 650_7 $$2INSPIRE$$alinear collider
000473285 650_7 $$2INSPIRE$$achargino: production
000473285 650_7 $$2INSPIRE$$achargino: NLSP
000473285 650_7 $$2INSPIRE$$aNLSP: long-lived
000473285 650_7 $$2INSPIRE$$aWIMP: dark matter
000473285 650_7 $$2INSPIRE$$aLSP: dark matter
000473285 650_7 $$2INSPIRE$$aneutralino: LSP
000473285 650_7 $$2INSPIRE$$aneutralino: dark matter
000473285 650_7 $$2INSPIRE$$aWino: dark matter
000473285 650_7 $$2INSPIRE$$aHiggsino: dark matter
000473285 650_7 $$2autogen$$aBeyond Standard Model
000473285 650_7 $$2autogen$$aSupersymmetric Standard Model
000473285 693__ $$0EXP:(DE-H253)MUON-20220801$$1EXP:(DE-H253)MUON-20220801$$aPlanned International Muon Collider Facility$$x0
000473285 7001_ $$0P:(DE-H253)PIP1083387$$aMeloni, Federico$$b1$$eCorresponding author
000473285 7001_ $$0R.Simoniello.1$$aSimoniello, Rosa$$b2
000473285 7001_ $$0J.Zurita.1$$aZurita, Jose$$b3
000473285 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP06(2021)133$$gVol. 06, no. 6, p. 133$$n6$$p133$$tJournal of high energy physics$$v06$$x1029-8479$$y2021
000473285 8564_ $$uhttps://bib-pubdb1.desy.de/record/473285/files/211223_Capdevilla2021_Article_HuntingWinoAndHiggsinoDarkMatt.pdf$$yOpenAccess
000473285 8564_ $$uhttps://bib-pubdb1.desy.de/record/473285/files/211223_Capdevilla2021_Article_HuntingWinoAndHiggsinoDarkMatt.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000473285 909CO $$ooai:bib-pubdb1.desy.de:473285$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000473285 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083387$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000473285 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000473285 9141_ $$y2021
000473285 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000473285 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000473285 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000473285 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000473285 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000473285 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2019$$d2021-01-30
000473285 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2019$$d2021-01-30
000473285 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-30
000473285 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-30
000473285 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000473285 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000473285 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000473285 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000473285 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-30
000473285 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000473285 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000473285 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000473285 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-01-30
000473285 9201_ $$0I:(DE-H253)ATLAS-20120731$$kATLAS$$lLHC/ATLAS Experiment$$x0
000473285 980__ $$ajournal
000473285 980__ $$aVDB
000473285 980__ $$aI:(DE-H253)ATLAS-20120731
000473285 980__ $$aUNRESTRICTED
000473285 9801_ $$aFullTexts