001     473097
005     20250716150531.0
024 7 _ |a 10.1063/5.0021117
|2 doi
024 7 _ |a 0034-6748
|2 ISSN
024 7 _ |a 1089-7623
|2 ISSN
024 7 _ |a 1527-2400
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2021-05455
|2 datacite_doi
024 7 _ |a altmetric:97575942
|2 altmetric
024 7 _ |a 33514233
|2 pmid
024 7 _ |a WOS:000609450200001
|2 WOS
024 7 _ |2 openalex
|a openalex:W3118278628
037 _ _ |a PUBDB-2021-05455
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Garland, J. M.
|0 0000-0002-3581-6566
|b 0
|e Corresponding author
245 _ _ |a Combining Laser Interferometry and Plasma Spectroscopy for Spatially Resolved High-Sensitivity Plasma Density Measurements in Discharge Capillaries
260 _ _ |a [S.l.]
|c 2021
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640170131_5011
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ACKNOWLEDGMENTSThe authors acknowledge funding from the Helmholtz Matter and Technologies Accelerator Research and Development program and the Helmholtz IuVF ZT-0009 grant.
520 _ _ |a Precise characterization and tailoring of the spatial and temporal evolution of plasma density within plasma sources are critical for realizing high-quality accelerated beams in plasma wakefield accelerators. The simultaneous use of two independent diagnostics allowed the temporally and spatially resolved detection of plasma density with unprecedented sensitivity and enabled the characterization of the plasma temperature in discharge capillaries for times later than 0.5 µs after the initiation of the discharge, at which point the plasma is at local thermodynamic equilibrium. A common-path two-color laser interferometer for obtaining the average plasma density with a sensitivity of 2 × 10$^{17}$ cm$^{−2}$ was developed together with a plasma emission spectrometer for analyzing spectral line broadening profiles with a resolution of 5 × 10$^{15}$ cm$^{-3}$. Both diagnostics show good agreement when applying the spectral line broadening analysis methodology of Gigosos and Cardeñoso in the temperature range of 0.5 eV–5.0 eV. For plasma with densities of 0.5–2.5 × 10$^{17}$ cm$^{−3}$, temperatures of 1 eV–7 eV were indirectly measured by combining the diagnostic information. Measured longitudinally resolved plasma density profiles exhibit a clear temporal evolution from an initial flat-top to a Gaussian-like shape in the first microseconds as material is ejected out from the capillary. These measurements pave the way for highly detailed parameter tuning in plasma sources for particle accelerators and beam optics.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Tauscher, G.
|0 0000-0003-3501-8094
|b 1
700 1 _ |a Bohlen, S.
|0 P:(DE-H253)PIP1019641
|b 2
|u desy
700 1 _ |a Boyle, G. J.
|0 P:(DE-H253)PIP1083196
|b 3
700 1 _ |a D'Arcy, Richard
|0 P:(DE-H253)PIP1027904
|b 4
|u desy
700 1 _ |a Goldberg, L.
|0 P:(DE-H253)PIP1016743
|b 5
700 1 _ |a Põder, K.
|0 P:(DE-H253)PIP1030949
|b 6
|u desy
700 1 _ |a Schaper, L.
|0 P:(DE-H253)PIP1015071
|b 7
|u desy
700 1 _ |a Schmidt, B.
|0 0000-0003-0295-6623
|b 8
700 1 _ |a Osterhoff, Jens
|0 P:(DE-H253)PIP1012785
|b 9
|u desy
773 _ _ |a 10.1063/5.0021117
|g Vol. 92, no. 1, p. 013505 -
|0 PERI:(DE-600)1472905-2
|n 1
|p 013505
|t Review of scientific instruments
|v 92
|y 2021
|x 0034-6748
856 4 _ |y Published on 2021-01-11. Available in OpenAccess from 2022-01-11.
|u https://bib-pubdb1.desy.de/record/473097/files/5.0021117.pdf
856 4 _ |y Published on 2021-01-11. Available in OpenAccess from 2022-01-11.
|x pdfa
|u https://bib-pubdb1.desy.de/record/473097/files/5.0021117.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:473097
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1019641
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1083196
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1027904
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1030949
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1015071
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1015071
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1012785
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and Technologies
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REV SCI INSTRUM : 2019
|d 2021-02-02
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 1 _ |0 I:(DE-H253)MPA-20200816
|k MPA
|l Plasma Accelerators
|x 0
920 1 _ |0 I:(DE-H253)MPA2-20210408
|k MPA2
|l Beam-Driven Plasma Accelerators
|x 1
920 1 _ |0 I:(DE-H253)MPY-20120731
|k MPY
|l Beschleunigerphysik
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MPA-20200816
980 _ _ |a I:(DE-H253)MPA2-20210408
980 _ _ |a I:(DE-H253)MPY-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21