001     473043
005     20250715175730.0
024 7 _ |a 10.1107/S1600576722002667
|2 doi
024 7 _ |a 0021-8898
|2 ISSN
024 7 _ |a 1600-5767
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2021-05426
|2 datacite_doi
024 7 _ |a altmetric:127152898
|2 altmetric
024 7 _ |a 35719305
|2 pmid
024 7 _ |a WOS:000810763300001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4224249746
037 _ _ |a PUBDB-2021-05426
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Assalauova, Dameli
|0 P:(DE-H253)PIP1026644
|b 0
|u desy
245 _ _ |a Classification of diffraction patterns using a convolutional neural network in single particle imaging experiments performed at X-ray free-electron lasers
260 _ _ |a [S.l.]
|c 2022
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1654247134_8396
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Abstract Single particle imaging (SPI) at X-ray free electron lasers (XFELs) is particularly well suited to determine the 3D structure of particles in their native environment. For a successful reconstruction, diffraction patterns originating from a single hit must be isolated from a large number of acquired patterns. We propose to formulate this task as an image classification problem and solve it using convolutional neural network (CNN) architectures. Two CNN configurations are developed: one that maximises the F1-score and one that emphasises high recall. We also combine the CNNs with expectation maximization (EM) selection as well as size filtering. We observed that our CNN selections have lower contrast in power spectral density functions relative to the EM selection, used in our previous work. However, the reconstruction of our CNN-based selections gives similar results. Introducing CNNs into SPI experiments allows streamlining the reconstruction pipeline, enables researchers to classify patterns on the fly, and, as a consequence, enables them to tightly control the duration of their experiments. We think that bringing non-standard artificial intelligence (AI) based solutions in a well-described SPI analysis workflow may be beneficial for the future development of the SPI experiments.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a XFEL
|e Experiments at XFEL
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL-Exp-20150101
|5 EXP:(DE-H253)XFEL-Exp-20150101
|x 0
700 1 _ |a Ignatenko, Alexandr
|0 P:(DE-H253)PIP1006454
|b 1
|u desy
700 1 _ |a Isensee, Fabian
|0 P:(DE-H253)PIP1095998
|b 2
700 1 _ |a Bobkov, Sergej
|0 P:(DE-H253)PIP1097025
|b 3
700 1 _ |a Darya, Trofimova
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Vartaniants, Ivan
|0 P:(DE-H253)PIP1003481
|b 5
|e Corresponding author
|u desy
773 _ _ |a 10.1107/S1600576722002667
|g Vol. 55, no. 3
|0 PERI:(DE-600)2020879-0
|n 3
|p 444 - 454
|t Journal of applied crystallography
|v 55
|y 2022
|x 0021-8898
856 4 _ |u https://bib-pubdb1.desy.de/record/473043/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/473043/files/Internal_review_text.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/473043/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/473043/files/Scan%2022.04.2022%2C%2011-14.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/473043/files/206_SPI_CNN_JAC_2022.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/473043/files/CNN_XFEL_IUCrJ_final_January_10_2022.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/473043/files/Internal_review_text.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/473043/files/Scan%2022.04.2022%2C%2011-14.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/473043/files/te5090.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/473043/files/206_SPI_CNN_JAC_2022.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/473043/files/CNN_XFEL_IUCrJ_final_January_10_2022.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/473043/files/te5090.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:473043
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1026644
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1026644
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1006454
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1006454
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1095998
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1097025
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1097025
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1003481
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1003481
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL CRYSTALLOGR : 2019
|d 2021-01-29
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-20140814
|k FS-PETRA
|l FS-PETRA
|x 1
920 1 _ |0 I:(DE-H253)XFEL_DO_TS-20210408
|k XFEL_DO_TS
|l Technical services
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 _ _ |a I:(DE-H253)FS-PETRA-20140814
980 _ _ |a I:(DE-H253)XFEL_DO_TS-20210408
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21