000473043 001__ 473043
000473043 005__ 20250715175730.0
000473043 0247_ $$2doi$$a10.1107/S1600576722002667
000473043 0247_ $$2ISSN$$a0021-8898
000473043 0247_ $$2ISSN$$a1600-5767
000473043 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-05426
000473043 0247_ $$2altmetric$$aaltmetric:127152898
000473043 0247_ $$2pmid$$a35719305
000473043 0247_ $$2WOS$$aWOS:000810763300001
000473043 0247_ $$2openalex$$aopenalex:W4224249746
000473043 037__ $$aPUBDB-2021-05426
000473043 041__ $$aEnglish
000473043 082__ $$a540
000473043 1001_ $$0P:(DE-H253)PIP1026644$$aAssalauova, Dameli$$b0$$udesy
000473043 245__ $$aClassification of diffraction patterns using a convolutional neural network in single particle imaging experiments performed at X-ray free-electron lasers
000473043 260__ $$a[S.l.]$$bWiley-Blackwell$$c2022
000473043 3367_ $$2DRIVER$$aarticle
000473043 3367_ $$2DataCite$$aOutput Types/Journal article
000473043 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654247134_8396
000473043 3367_ $$2BibTeX$$aARTICLE
000473043 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000473043 3367_ $$00$$2EndNote$$aJournal Article
000473043 520__ $$aAbstract	Single particle imaging (SPI) at X-ray free electron lasers (XFELs) is particularly well suited to determine the 3D structure of particles in their native environment. For a successful reconstruction, diffraction patterns originating from a single hit must be isolated from a large number of acquired patterns. We propose to formulate this task as an image classification problem and solve it using convolutional neural network (CNN) architectures. Two CNN configurations are developed: one that maximises the F1-score and one that emphasises high recall. We also combine the CNNs with expectation maximization (EM) selection as well as size filtering. We observed that our CNN selections have lower contrast in power spectral density functions relative to the EM selection, used in our previous work. However, the reconstruction of our CNN-based selections gives similar results. Introducing CNNs into SPI experiments allows streamlining the reconstruction pipeline, enables researchers to classify patterns on the fly, and, as a consequence, enables them to tightly control the duration of their experiments. We think that bringing non-standard artificial intelligence (AI) based solutions in a well-described SPI analysis workflow may be beneficial for the future development of the SPI experiments.
000473043 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0
000473043 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000473043 693__ $$0EXP:(DE-H253)XFEL-Exp-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL-Exp-20150101$$aXFEL$$eExperiments at XFEL$$x0
000473043 7001_ $$0P:(DE-H253)PIP1006454$$aIgnatenko, Alexandr$$b1$$udesy
000473043 7001_ $$0P:(DE-H253)PIP1095998$$aIsensee, Fabian$$b2
000473043 7001_ $$0P:(DE-H253)PIP1097025$$aBobkov, Sergej$$b3
000473043 7001_ $$0P:(DE-HGF)0$$aDarya, Trofimova$$b4
000473043 7001_ $$0P:(DE-H253)PIP1003481$$aVartaniants, Ivan$$b5$$eCorresponding author$$udesy
000473043 773__ $$0PERI:(DE-600)2020879-0$$a10.1107/S1600576722002667$$gVol. 55, no. 3$$n3$$p444 - 454$$tJournal of applied crystallography$$v55$$x0021-8898$$y2022
000473043 8564_ $$uhttps://bib-pubdb1.desy.de/record/473043/files/HTML-Approval_of_scientific_publication.html
000473043 8564_ $$uhttps://bib-pubdb1.desy.de/record/473043/files/Internal_review_text.pdf
000473043 8564_ $$uhttps://bib-pubdb1.desy.de/record/473043/files/PDF-Approval_of_scientific_publication.pdf
000473043 8564_ $$uhttps://bib-pubdb1.desy.de/record/473043/files/Scan%2022.04.2022%2C%2011-14.pdf
000473043 8564_ $$uhttps://bib-pubdb1.desy.de/record/473043/files/206_SPI_CNN_JAC_2022.pdf$$yOpenAccess
000473043 8564_ $$uhttps://bib-pubdb1.desy.de/record/473043/files/CNN_XFEL_IUCrJ_final_January_10_2022.pdf$$yOpenAccess
000473043 8564_ $$uhttps://bib-pubdb1.desy.de/record/473043/files/Internal_review_text.pdf?subformat=pdfa$$xpdfa
000473043 8564_ $$uhttps://bib-pubdb1.desy.de/record/473043/files/Scan%2022.04.2022%2C%2011-14.pdf?subformat=pdfa$$xpdfa
000473043 8564_ $$uhttps://bib-pubdb1.desy.de/record/473043/files/te5090.pdf$$yOpenAccess
000473043 8564_ $$uhttps://bib-pubdb1.desy.de/record/473043/files/206_SPI_CNN_JAC_2022.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000473043 8564_ $$uhttps://bib-pubdb1.desy.de/record/473043/files/CNN_XFEL_IUCrJ_final_January_10_2022.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000473043 8564_ $$uhttps://bib-pubdb1.desy.de/record/473043/files/te5090.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000473043 8767_ $$92022$$aTODO$$d2022-04-22$$eHybrid-OA$$jDEAL$$lWiley$$zQuarterly report 1.7.22
000473043 8767_ $$92022$$aTODO$$d2022-04-22$$eOther$$jDEAL$$lWiley$$zMPDL-Gebühr
000473043 909CO $$ooai:bib-pubdb1.desy.de:473043$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000473043 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1026644$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000473043 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1026644$$aEuropean XFEL$$b0$$kXFEL.EU
000473043 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006454$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000473043 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006454$$aEuropean XFEL$$b1$$kXFEL.EU
000473043 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095998$$aExternal Institute$$b2$$kExtern
000473043 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097025$$aExternal Institute$$b3$$kExtern
000473043 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1097025$$aEuropean XFEL$$b3$$kXFEL.EU
000473043 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000473043 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003481$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000473043 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1003481$$aEuropean XFEL$$b5$$kXFEL.EU
000473043 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0
000473043 9141_ $$y2022
000473043 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000473043 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000473043 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000473043 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000473043 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL CRYSTALLOGR : 2019$$d2021-01-29
000473043 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000473043 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000473043 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000473043 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000473043 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000473043 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000473043 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000473043 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000473043 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-29
000473043 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000473043 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000473043 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000473043 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000473043 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000473043 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000473043 9201_ $$0I:(DE-H253)FS-PS-20131107$$kFS-PS$$lFS-Photon Science$$x0
000473043 9201_ $$0I:(DE-H253)FS-PETRA-20140814$$kFS-PETRA$$lFS-PETRA$$x1
000473043 9201_ $$0I:(DE-H253)XFEL_DO_TS-20210408$$kXFEL_DO_TS$$lTechnical services$$x2
000473043 980__ $$ajournal
000473043 980__ $$aVDB
000473043 980__ $$aUNRESTRICTED
000473043 980__ $$aI:(DE-H253)FS-PS-20131107
000473043 980__ $$aI:(DE-H253)FS-PETRA-20140814
000473043 980__ $$aI:(DE-H253)XFEL_DO_TS-20210408
000473043 980__ $$aAPC
000473043 9801_ $$aAPC
000473043 9801_ $$aFullTexts