000472515 001__ 472515
000472515 005__ 20250716150713.0
000472515 0247_ $$2doi$$a10.1039/D1DT03199F
000472515 0247_ $$2ISSN$$a0300-9246
000472515 0247_ $$2ISSN$$a1364-5447
000472515 0247_ $$2ISSN$$a(2001)
000472515 0247_ $$2ISSN$$a1470-479X
000472515 0247_ $$2ISSN$$a1477-9226
000472515 0247_ $$2ISSN$$a1477-9234
000472515 0247_ $$2ISSN$$a2050-5671
000472515 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-05068
000472515 0247_ $$2pmid$$a34806720
000472515 0247_ $$2WOS$$aWOS:000720971000001
000472515 0247_ $$2openalex$$aopenalex:W3214562827
000472515 037__ $$aPUBDB-2021-05068
000472515 041__ $$aEnglish
000472515 082__ $$a540
000472515 1001_ $$0P:(DE-H253)PIP1094400$$aSmuda, Matthias$$b0
000472515 245__ $$aFormation of Bi$_2$Ir nanoparticles in a microwave-assisted polyol process revealing the suboxide Bi$_4$Ir$_2$O
000472515 260__ $$aLondon$$bSoc.$$c2021
000472515 3367_ $$2DRIVER$$aarticle
000472515 3367_ $$2DataCite$$aOutput Types/Journal article
000472515 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641475555_22559
000472515 3367_ $$2BibTeX$$aARTICLE
000472515 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000472515 3367_ $$00$$2EndNote$$aJournal Article
000472515 520__ $$aIntermetallic phases are usually obtained by crystallization from the melt. However, phases containing elements with widely different melting and boiling points, as well as nanoparticles, which provide a high specific surface area, are hardly accessible via such a high-temperature process. The polyol process is one option to circumvent these obstacles by using a solution-based approach at moderate temperatures. In this study, the formation of Bi2Ir nanoparticles in a microwave-assisted polyol process was investigated. Solutions were analyzed using UV–Vis spectroscopy and the reaction was tracked with synchrotron-based in situ powder X-ray diffraction (PXRD). The products were characterized by PXRD and high-resolution transmission electron microscopy. Starting from Bi(NO$_3$)$_3$ and Ir(OAc)$_3$, the new suboxide Bi$_4$Ir$_2$O forms as an intermediate phase at about 160 °C. Its structure was determined by a combination of PXRD and quantum-chemical calculations. Bi$_4$Ir$_2$O decomposes in vacuum at about 250 °C and is reduced to Bi$_2$Ir by hydrogen at 150 °C. At about 240 °C, the polyol process leads to the immediate reduction of the two metal-containing precursors and crystallization of Bi2Ir nanoparticles.
000472515 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000472515 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000472515 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000472515 693__ $$0EXP:(DE-H253)P-P23-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P23-20150101$$aPETRA III$$fPETRA Beamline P23$$x0
000472515 7001_ $$00000-0002-0862-2782$$aFinzel, Kati$$b1
000472515 7001_ $$0P:(DE-H253)PIP1020225$$aHantusch, Martin$$b2
000472515 7001_ $$0P:(DE-H253)PIP1080320$$aStröh, Jonas$$b3
000472515 7001_ $$0P:(DE-H253)PIP1008726$$aPienack, Nicole$$b4
000472515 7001_ $$0P:(DE-H253)PIP1085741$$aKhadiev, Azat$$b5
000472515 7001_ $$0P:(DE-H253)PIP1025761$$aTerraschke, Huayna$$b6
000472515 7001_ $$0P:(DE-H253)PIP1013787$$aRuck, Michael$$b7
000472515 7001_ $$0P:(DE-H253)PIP1014492$$aDoert, Thomas$$b8$$eCorresponding author
000472515 773__ $$0PERI:(DE-600)1472887-4$$a10.1039/D1DT03199F$$gp. 10.1039.D1DT03199F$$p17665 - 17674$$tDalton transactions$$v50$$x0300-9246$$y2021
000472515 8564_ $$uhttps://bib-pubdb1.desy.de/record/472515/files/authorreprints.pdf$$yRestricted
000472515 8564_ $$uhttps://bib-pubdb1.desy.de/record/472515/files/document%28116%29.pdf$$yPublished on 2021-12-21. Available in OpenAccess from 2022-12-21.
000472515 8564_ $$uhttps://bib-pubdb1.desy.de/record/472515/files/authorreprints.pdf?subformat=pdfa$$xpdfa$$yRestricted
000472515 8564_ $$uhttps://bib-pubdb1.desy.de/record/472515/files/document%28116%29.pdf?subformat=pdfa$$xpdfa$$yPublished on 2021-12-21. Available in OpenAccess from 2022-12-21.
000472515 909CO $$ooai:bib-pubdb1.desy.de:472515$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000472515 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094400$$aExternal Institute$$b0$$kExtern
000472515 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1020225$$aExternal Institute$$b2$$kExtern
000472515 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1080320$$aExternal Institute$$b3$$kExtern
000472515 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008726$$aExternal Institute$$b4$$kExtern
000472515 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1085741$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000472515 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1025761$$aExternal Institute$$b6$$kExtern
000472515 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013787$$aExternal Institute$$b7$$kExtern
000472515 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1014492$$aExternal Institute$$b8$$kExtern
000472515 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000472515 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000472515 9141_ $$y2021
000472515 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000472515 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000472515 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000472515 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000472515 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDALTON T : 2019$$d2021-01-27
000472515 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000472515 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000472515 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000472515 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000472515 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-27$$wger
000472515 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000472515 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-27
000472515 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-27$$wger
000472515 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000472515 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000472515 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000472515 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000472515 9201_ $$0I:(DE-H253)FS-PET-D-20190712$$kFS-PET-D$$lExperimentebetreuung PETRA III$$x1
000472515 9201_ $$0I:(DE-H253)UDresden-20130903$$kUDresden$$lTU Dresden$$x2
000472515 9201_ $$0I:(DE-H253)UKiel-20120814$$kUKiel$$lUni Kiel$$x3
000472515 980__ $$ajournal
000472515 980__ $$aVDB
000472515 980__ $$aUNRESTRICTED
000472515 980__ $$aI:(DE-H253)HAS-User-20120731
000472515 980__ $$aI:(DE-H253)FS-PET-D-20190712
000472515 980__ $$aI:(DE-H253)UDresden-20130903
000472515 980__ $$aI:(DE-H253)UKiel-20120814
000472515 9801_ $$aFullTexts