001     472481
005     20250716150636.0
024 7 _ |a 10.1002/adma.202105923
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2021-05034
|2 datacite_doi
024 7 _ |a altmetric:115638072
|2 altmetric
024 7 _ |a pmid:34677879
|2 pmid
024 7 _ |a WOS:000709903400001
|2 WOS
024 7 _ |2 openalex
|a openalex:W3205931917
037 _ _ |a PUBDB-2021-05034
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Brinker, Manuel
|0 P:(DE-H253)PIP1015737
|b 0
|e Corresponding author
245 _ _ |a Wafer-Scale Electroactive Nanoporous Silicon: Large and Fully Reversible Electrochemo-Mechanical Actuation in Aqueous Electrolytes
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643122004_32615
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nanoporosity in silicon results in interface-dominated mechanics, fluidics, and photonics that are often superior to the ones of the bulk material. However, their active control, for example, by electronic stimuli, is challenging due to the absence of intrinsic piezoelectricity in the base material. Here, for large-scale nanoporous silicon cantilevers wetted by aqueous electrolytes, electrosorption-induced mechanical stress generation of up to 600 kPa that is reversible and adjustable at will by potential variations of ≈1 V is shown. Laser cantilever bending experiments in combination with in operando voltammetry and step coulombmetry allow this large electro-actuation to be traced to the concerted action of 100 billions of parallel nanopores per square centimeter cross-section and determination of the capacitive charge–stress coupling parameter upon ion adsorption and desorption as well as the intimately related stress actuation dynamics for perchloric and isotonic saline solutions. A comparison with planar silicon surfaces reveals mechanistic insights on the observed electrocapillarity (Hellmann–Feynman interactions) with respect to the importance of oxide formation and wall roughness on the single-nanopore scale. The observation of robust electrochemo-mechanical actuation in a mainstream semiconductor with wafer-scale, self-organized nanoporosity opens up novel opportunities for on-chip integrated stress generation and actuorics at exceptionally low operation voltages.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a EHAWEDRY - Energy harvesting via wetting/drying cycles with nanoporous electrodes (964524)
|0 G:(EU-Grant)964524
|c 964524
|f H2020-FETOPEN-2018-2019-2020-01
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Huber, Patrick
|0 P:(DE-H253)PIP1013897
|b 1
|e Corresponding author
773 _ _ |a 10.1002/adma.202105923
|g p. 2105923 -
|0 PERI:(DE-600)1474949-X
|n 1
|p 2105923
|t Advanced materials
|v 34
|y 2021
|x 0935-9648
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/472481/files/Advanced%20Materials%20-%202021%20-%20Brinker%20-%20Wafer%25u2010Scale%20Electroactive%20Nanoporous%20Silicon%20Large%20and%20Fully%20Reversible.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/472481/files/Advanced%20Materials%20-%202021%20-%20Brinker%20-%20Wafer%25u2010Scale%20Electroactive%20Nanoporous%20Silicon%20Large%20and%20Fully%20Reversible.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:472481
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1015737
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1013897
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1013897
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-04
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV MATER : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
920 1 _ |0 I:(DE-H253)TUHH-20210331
|k TUHH
|l Technische Universität Hamburg-Harburg
|x 0
920 1 _ |0 I:(DE-H253)CIMMS-20211022
|k CIMMS
|l CIMMS-RA Center for integr. Multiscale M
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)TUHH-20210331
980 _ _ |a I:(DE-H253)CIMMS-20211022
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21