000472481 001__ 472481
000472481 005__ 20250716150636.0
000472481 0247_ $$2doi$$a10.1002/adma.202105923
000472481 0247_ $$2ISSN$$a0935-9648
000472481 0247_ $$2ISSN$$a1521-4095
000472481 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-05034
000472481 0247_ $$2altmetric$$aaltmetric:115638072
000472481 0247_ $$2pmid$$apmid:34677879
000472481 0247_ $$2WOS$$aWOS:000709903400001
000472481 0247_ $$2openalex$$aopenalex:W3205931917
000472481 037__ $$aPUBDB-2021-05034
000472481 041__ $$aEnglish
000472481 082__ $$a660
000472481 1001_ $$0P:(DE-H253)PIP1015737$$aBrinker, Manuel$$b0$$eCorresponding author
000472481 245__ $$aWafer-Scale Electroactive Nanoporous Silicon: Large and Fully Reversible Electrochemo-Mechanical Actuation in Aqueous Electrolytes
000472481 260__ $$aWeinheim$$bWiley-VCH$$c2021
000472481 3367_ $$2DRIVER$$aarticle
000472481 3367_ $$2DataCite$$aOutput Types/Journal article
000472481 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643122004_32615
000472481 3367_ $$2BibTeX$$aARTICLE
000472481 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000472481 3367_ $$00$$2EndNote$$aJournal Article
000472481 520__ $$aNanoporosity in silicon results in interface-dominated mechanics, fluidics, and photonics that are often superior to the ones of the bulk material. However, their active control, for example, by electronic stimuli, is challenging due to the absence of intrinsic piezoelectricity in the base material. Here, for large-scale nanoporous silicon cantilevers wetted by aqueous electrolytes, electrosorption-induced mechanical stress generation of up to 600 kPa that is reversible and adjustable at will by potential variations of ≈1 V is shown. Laser cantilever bending experiments in combination with in operando voltammetry and step coulombmetry allow this large electro-actuation to be traced to the concerted action of 100 billions of parallel nanopores per square centimeter cross-section and determination of the capacitive charge–stress coupling parameter upon ion adsorption and desorption as well as the intimately related stress actuation dynamics for perchloric and isotonic saline solutions. A comparison with planar silicon surfaces reveals mechanistic insights on the observed electrocapillarity (Hellmann–Feynman interactions) with respect to the importance of oxide formation and wall roughness on the single-nanopore scale. The observation of robust electrochemo-mechanical actuation in a mainstream semiconductor with wafer-scale, self-organized nanoporosity opens up novel opportunities for on-chip integrated stress generation and actuorics at exceptionally low operation voltages.
000472481 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000472481 536__ $$0G:(EU-Grant)964524$$aEHAWEDRY - Energy harvesting via wetting/drying cycles with nanoporous electrodes (964524)$$c964524$$fH2020-FETOPEN-2018-2019-2020-01$$x1
000472481 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000472481 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000472481 7001_ $$0P:(DE-H253)PIP1013897$$aHuber, Patrick$$b1$$eCorresponding author
000472481 773__ $$0PERI:(DE-600)1474949-X$$a10.1002/adma.202105923$$gp. 2105923 -$$n1$$p2105923$$tAdvanced materials$$v34$$x0935-9648$$y2021
000472481 8564_ $$uhttps://bib-pubdb1.desy.de/record/472481/files/Advanced%20Materials%20-%202021%20-%20Brinker%20-%20Wafer%25u2010Scale%20Electroactive%20Nanoporous%20Silicon%20Large%20and%20Fully%20Reversible.pdf$$yOpenAccess
000472481 8564_ $$uhttps://bib-pubdb1.desy.de/record/472481/files/Advanced%20Materials%20-%202021%20-%20Brinker%20-%20Wafer%25u2010Scale%20Electroactive%20Nanoporous%20Silicon%20Large%20and%20Fully%20Reversible.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000472481 909CO $$ooai:bib-pubdb1.desy.de:472481$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000472481 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015737$$aExternal Institute$$b0$$kExtern
000472481 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013897$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000472481 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013897$$aExternal Institute$$b1$$kExtern
000472481 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000472481 9141_ $$y2021
000472481 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000472481 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000472481 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-04
000472481 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000472481 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000472481 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-04$$wger
000472481 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000472481 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2019$$d2021-02-04
000472481 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000472481 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000472481 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2019$$d2021-02-04
000472481 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000472481 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-04$$wger
000472481 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000472481 9201_ $$0I:(DE-H253)TUHH-20210331$$kTUHH$$lTechnische Universität Hamburg-Harburg$$x0
000472481 9201_ $$0I:(DE-H253)CIMMS-20211022$$kCIMMS$$lCIMMS-RA Center for integr. Multiscale M$$x1
000472481 980__ $$ajournal
000472481 980__ $$aVDB
000472481 980__ $$aUNRESTRICTED
000472481 980__ $$aI:(DE-H253)TUHH-20210331
000472481 980__ $$aI:(DE-H253)CIMMS-20211022
000472481 9801_ $$aFullTexts