Home > Publications database > Selective phase filtering of charged beams with laser-driven antiresonant hollow-core fibers > print |
001 | 472099 | ||
005 | 20250715173605.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevResearch.5.013096 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2021-04838 |2 datacite_doi |
024 | 7 | _ | |a altmetric:142495079 |2 altmetric |
024 | 7 | _ | |a WOS:000932030000001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4319946226 |
037 | _ | _ | |a PUBDB-2021-04838 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Genovese, Luca |0 P:(DE-H253)PIP1083760 |b 0 |e Corresponding author |
245 | _ | _ | |a Selective phase filtering of charged beams with laser-driven antiresonant hollow-core fibers |
260 | _ | _ | |a College Park, MD |c 2023 |b APS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1685019422_2057840 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a approval: title has changed Physical Review Research |
520 | _ | _ | |a Emerging accelerator concepts increasingly rely on the combination of high frequency electromagnetic radiation with electron beams, enabling longitudinal phase space manipulation which supports a variety of advanced applications. The handshake between electron beams and radiation is conventionally provided by magnetic undulators which unfortunately require a balance between the electron beam energy, undulator parameters and laser wavelength. Here we propose a novel scheme using laser-driven large-core anti-resonant optical fibers to manipulate electron beams. We explore two general cases using TM$_{01}$ and HE$_{11}$ modes. In the former, we show that large energy modulations $\mathcal{O}$(100 keV) can be achieved while maintaining the overall electron beam quality. Further, we show that by using larger field strengths $\mathcal{O}$(100 MV/m) the resulting transverse forces can be exploited with beam matching conditions to filter arbitrary phases from the modulated electron bunch, leading to the production of $\approx$100~attosecond FWHM microbunches. Finally, we also investigate the application of the transverse dipole HE$_{11}$ mode and find it suitable for supporting time resolved electron beam measurements with sub-attosecond resolution. We expect the findings to be widely appealing to high-charge pump-probe experiments, metrology, and accelerator science. |
536 | _ | _ | |a 621 - Accelerator Research and Development (POF4-621) |0 G:(DE-HGF)POF4-621 |c POF4-621 |f POF IV |x 0 |
536 | _ | _ | |a ARIES - Accelerator Research and Innovation for European Science and Society (730871) |0 G:(EU-Grant)730871 |c 730871 |f H2020-INFRAIA-2016-1 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a SINBAD |e Accelerator Research Experiment at SINBAD |1 EXP:(DE-H253)SINBAD-20200101 |0 EXP:(DE-H253)ARES-20200101 |5 EXP:(DE-H253)ARES-20200101 |x 0 |
700 | 1 | _ | |a Kellermeier, Max |0 P:(DE-H253)PIP1086263 |b 1 |
700 | 1 | _ | |a Mayet, Frank |0 P:(DE-H253)PIP1014786 |b 2 |
700 | 1 | _ | |a Floettmann, Klaus |0 P:(DE-H253)PIP1002625 |b 3 |
700 | 1 | _ | |a Wong, G. K. L. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Frosz, M. H. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Assmann, Ralph |0 P:(DE-H253)PIP1017739 |b 6 |
700 | 1 | _ | |a Russell, P. St. J. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Lemery, Francois |0 P:(DE-H253)PIP1026175 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1103/PhysRevResearch.5.013096 |g Vol. 5, no. 1, p. 013096 |0 PERI:(DE-600)3004165-X |n 1 |p 013096 |t Physical review research |v 5 |y 2023 |x 2643-1564 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/472099/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/472099/files/INV_23_JAN_010229.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/472099/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/472099/files/INV_23_JAN_010229.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/472099/files/PhysRevResearch.5.013096.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/472099/files/PhysRevResearch.5.013096.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:472099 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1083760 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1086263 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1014786 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1014786 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1002625 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1017739 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1026175 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-08-16T10:08:58Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-08-16T10:08:58Z |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-29 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2022-08-16T10:08:58Z |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV RES : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-27 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
920 | 1 | _ | |0 I:(DE-H253)MPY1-20170908 |k MPY1 |l Beschleunigerphysik Fachgruppe MPY1 |x 0 |
920 | 1 | _ | |0 I:(DE-H253)MPY-20120731 |k MPY |l Beschleunigerphysik |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)MPY1-20170908 |
980 | _ | _ | |a I:(DE-H253)MPY-20120731 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|