001     471645
005     20250724175810.0
024 7 _ |a 10.1021/jacs.1c07322
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2021-04513
|2 datacite_doi
024 7 _ |a altmetric:115506044
|2 altmetric
024 7 _ |a pmid:34668697
|2 pmid
024 7 _ |a WOS:000715845900034
|2 WOS
024 7 _ |a openalex:W3205516242
|2 openalex
037 _ _ |a PUBDB-2021-04513
041 _ _ |a English
082 _ _ |a 540
088 _ _ |a I-20200084
|2 Other
100 1 _ |a Martini, Maria
|0 P:(DE-H253)PIP1092633
|b 0
|e First author
245 _ _ |a The Nonphysiological Reductant Sodium Dithionite and [FeFe] Hydrogenase: Influence on the Enzyme Mechanism
260 _ _ |a Washington, DC
|c 2021
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637234365_2308
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a [FeFe] hydrogenases are highly active enzymes for interconverting protons and electrons with hydrogen (H$_2$). Their active site H-cluster is formed of a canonical [4Fe-4S] cluster ([4Fe-4S]$_H$) covalently attached to a unique [2Fe] subcluster ([2Fe]$_H$), where both sites are redox active. Heterolytic splitting and formation of H$_2$ takes place at [2Fe]$_H$, while [4Fe-4S]$_H$ stores electrons. The detailed catalytic mechanism of these enzymes is under intense investigation, with two dominant models existing in the literature. In one model, an alternative form of the active oxidized state H$_{ox}$, named H$_{ox}$H, which forms at low pH in the presence of the nonphysiological reductant sodium dithionite (NaDT), is believed to play a crucial role. H$_{ox}$H was previously suggested to have a protonated [4Fe-4S]$_H$. Here, we show that H$_{ox}$H forms by simple addition of sodium sulfite (Na$_2$SO$_3$, the dominant oxidation product of NaDT) at low pH. The low pH requirement indicates that sulfur dioxide (SO$_2$) is the species involved. Spectroscopy supports binding at or near [4Fe-4S]$_H$, causing its redox potential to increase by ∼60 mV. This potential shift detunes the redox potentials of the subclusters of the H-cluster, lowering activity, as shown in protein film electrochemistry (PFE). Together, these results indicate that H$_{ox}$H and its one-electron reduced counterpart H$_{red}$'H are artifacts of using a nonphysiological reductant, and not crucial catalytic intermediates. We propose renaming these states as the "dithionite (DT) inhibited" states H$_{ox}$-DT$_i$ and H$_{red}$-DT$_i$. The broader potential implications of using a nonphysiological reductant in spectroscopic and mechanistic studies of enzymes are highlighted.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20200084 (I-20200084)
|0 G:(DE-H253)I-20200084
|c I-20200084
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P01
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P01-20150101
|6 EXP:(DE-H253)P-P01-20150101
|x 0
700 1 _ |a Ruediger, Olaf
|0 P:(DE-H253)PIP1083365
|b 1
700 1 _ |a Breuer, Nina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nöring, Birgit
|0 P:(DE-HGF)0
|b 3
700 1 _ |a DeBeer, Serena
|0 P:(DE-H253)PIP1015325
|b 4
700 1 _ |a Rodriguez Macia, Patricia
|0 P:(DE-H253)PIP1087839
|b 5
|e Corresponding author
700 1 _ |a Birrell, James
|0 P:(DE-H253)PIP1087642
|b 6
|e Corresponding author
700 1 _ |a Bren, Kara
|0 P:(DE-HGF)0
|b 7
|e Editor
773 _ _ |a 10.1021/jacs.1c07322
|g Vol. 143, no. 43, p. 18159 - 18171
|0 PERI:(DE-600)1472210-0
|n 43
|p 18159 - 18171
|t Journal of the American Chemical Society
|v 143
|y 2021
|x 0002-7863
856 4 _ |u https://pubs.acs.org/doi/10.1021/jacs.1c07322
856 4 _ |u https://bib-pubdb1.desy.de/record/471645/files/Martini%20JACS%202021%20SI.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/471645/files/Martini%20JACS%202021.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/471645/files/Martini%20JACS%202021%20SI.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/471645/files/Martini%20JACS%202021.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:471645
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 0
|6 P:(DE-H253)PIP1092633
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1083365
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 1
|6 P:(DE-H253)PIP1083365
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 3
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1015325
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 4
|6 P:(DE-H253)PIP1015325
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1087839
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 5
|6 P:(DE-H253)PIP1087839
910 1 _ |a University of Oxford
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-H253)PIP1087839
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1087642
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 6
|6 P:(DE-H253)PIP1087642
910 1 _ |a University of Rochester
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2019
|d 2021-01-30
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J AM CHEM SOC : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)MPG-20120806
|k MPG
|l Max-Planck-Gesellschaft
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)MPG-20120806
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21