001     470978
005     20250724175755.0
024 7 _ |a 10.1107/S1600576721003034
|2 doi
024 7 _ |a 0021-8898
|2 ISSN
024 7 _ |a 1600-5767
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2021-04295
|2 datacite_doi
024 7 _ |a altmetric:106416219
|2 altmetric
024 7 _ |a 34188614
|2 pmid
024 7 _ |a WOS:000659339200012
|2 WOS
024 7 _ |a openalex:W3165684538
|2 openalex
037 _ _ |a PUBDB-2021-04295
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Wieland, D. C. F.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a ASAXS measurements on ferritin and apoferritin at the bioSAXS beamline P12 (PETRA III, DESY)
260 _ _ |a [S.l.]
|c 2021
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636104727_32541
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Small-angle X-ray scattering is widely utilized to study biological macromol­ecules in solution. For samples containing specific (e.g. metal) atoms, additional information can be obtained using anomalous scattering. Here, measuring samples at different energies close to the absorption edges of relevant elements provides specific structural details. However, anomalous small-angle X-ray scattering (ASAXS) applications to dilute macromolecular solutions are challenging owing to the overall low anomalous scattering effect. Here, pilot ASAXS experiments from dilute solutions of ferritin and cobalt-loaded apoferritin are reported. These samples were investigated near the resonance X-ray K edges of Fe and Co, respectively, at the EMBL P12 bioSAXS beamline at PETRA III, DESY. Thanks to the high brilliance of the P12 beamline, ASAXS experiments are feasible on dilute protein solutions, allowing one to extract the Fe- or Co-specific anomalous dispersion terms from the ASAXS data. The data were subsequently used to determine the spatial distribution of either iron or cobalt atoms incorporated into the ferritin/apoferritin protein cages.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P12
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P12-20150101
|6 EXP:(DE-H253)P-P12-20150101
|x 0
700 1 _ |a Schroer, M. A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gruzinov, A. Yu.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Blanchet, Clement
|0 P:(DE-H253)PIP1009408
|b 3
700 1 _ |a Jeffries, C. M.
|0 P:(DE-H253)PIP1018937
|b 4
700 1 _ |a Svergun, D. I.
|0 P:(DE-H253)PIP1001422
|b 5
773 _ _ |a 10.1107/S1600576721003034
|g Vol. 54, no. 3, p. 830 - 838
|0 PERI:(DE-600)2020879-0
|n 3
|p 830-838
|t Journal of applied crystallography
|v 54
|y 2021
|x 1600-5767
856 4 _ |u https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8202030/
856 4 _ |u https://bib-pubdb1.desy.de/record/470978/files/ASAXS%20measurements%20on%20ferritin%20and%20apoferritin%20at%20the%20bioSAXS%20beamline%20P12%20PETRA%20III%20DESY.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/470978/files/ASAXS%20measurements%20on%20ferritin%20and%20apoferritin%20at%20the%20bioSAXS%20beamline%20P12%20PETRA%20III%20DESY.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:470978
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 1
|6 P:(DE-HGF)0
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 2
|6 P:(DE-HGF)0
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 3
|6 P:(DE-H253)PIP1009408
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1009408
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 4
|6 P:(DE-H253)PIP1018937
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 5
|6 P:(DE-H253)PIP1001422
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL CRYSTALLOGR : 2019
|d 2021-01-29
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 0
920 1 _ |0 I:(DE-H253)EMBL-20120731
|k EMBL
|l EMBL
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 _ _ |a I:(DE-H253)EMBL-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21