000466134 001__ 466134
000466134 005__ 20230214180959.0
000466134 0247_ $$2CORDIS$$aG:(EU-Grant)951224$$d951224
000466134 0247_ $$2CORDIS$$aG:(EU-Call)ERC-2020-SyG$$dERC-2020-SyG
000466134 0247_ $$2originalID$$acorda__h2020::951224
000466134 035__ $$aG:(EU-Grant)951224
000466134 150__ $$aThe ultimate Time scale in Organic Molecular opto-electronics, the ATTOsecond$$y2021-04-01 - 2027-03-31
000466134 372__ $$aERC-2020-SyG$$s2021-04-01$$t2027-03-31
000466134 450__ $$aTOMATTO$$wd$$y2021-04-01 - 2027-03-31
000466134 5101_ $$0I:(DE-588b)5098525-5$$2CORDIS$$aEuropean Union
000466134 680__ $$aPhotoinduced electron transfer (ET) and charge transfer (CT) processes occurring in organic materials are the cornerstone of technologies aiming at the conversion of solar energy into electrical energy and at its efficient transport. Thus, investigations of ET/CT induced by visible (VIS) and ultraviolet (UV) light are fundamental for the development of more efficient organic opto-electronic materials. The usual strategy to improve efficiency is chemical modification, which is based on chemical intuition and try-and-error approaches, with no control on the ultrafast electron dynamics induced by light. Achieving the latter is not easy, as the natural time scale for electronic motion is the attosecond (10-18 seconds), which is much shorter than the duration of laser pulses produced in femtochemistry laboratories. With femtosecond pulses, one can image and control “slower” processes, such as isomerization, nuclear vibrations, hydrogen migration, etc., which certainly affect ET and CT at “longer” time scales. However, real-time imaging of electronic motion is possibly the only way to fully understand and control the early stages of ET and CT, and by extension the coupled electron-nuclear dynamics that come later and lead (or not) to an efficient electric current. In this project we propose to overcome the fs time-scale bottleneck and get direct information on the early stages of ET/CT generated by VIS and UV light absorption on organic opto-electronic systems by extending the tools of attosecond science beyond the state of the art and combining them with the most advanced methods of organic synthesis and computational modelling. The objective is to provide clear-cut movies of ET/CT with unprecedented time resolution and with the ultimate goal of engineering the molecular response to optimize the light driven processes leading to the desired opto-electronic behavior. To this end, synergic efforts between laser physicists, organic chemists and theoreticians is compulsory.
000466134 909CO $$ooai:juser.fz-juelich.de:897824$$pauthority$$pauthority:GRANT
000466134 909CO $$ooai:juser.fz-juelich.de:897824
000466134 980__ $$aG
000466134 980__ $$aCORDIS
000466134 980__ $$aAUTHORITY