001     465687
005     20250716150735.0
024 7 _ |a 10.2138/am-2022-7989
|2 doi
024 7 _ |a 0003-004X
|2 ISSN
024 7 _ |a 1945-3027
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2021-03999
|2 datacite_doi
024 7 _ |a altmetric:128775291
|2 altmetric
024 7 _ |a WOS:000790666400010
|2 WOS
024 7 _ |2 openalex
|a openalex:W4200303508
037 _ _ |a PUBDB-2021-03999
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Li, Xinyang
|0 P:(DE-H253)PIP1090582
|b 0
|e Corresponding author
245 _ _ |a Synthesis, structure refinement and single-crystal elasticity of Al-bearing superhydrous phase B
260 _ _ |a Alexandria, Va.
|c 2021
|b GeoScienceWorld
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1655454655_3271
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dense hydrous magnesium silicates (DHMSs) with large water content and wide stability fields are a potential H2O reservoir in the deep Earth. Al-bearing superhydrous phase B (shy-B) with a wider stability field than the Al-free counterpart can play an important role in understanding H$_2$O transport in the Earth’s transition zone and topmost lower mantle. In this study, a nominally Al-free and two different Al-bearing shy-B with 0.47(2) and 1.35(4) Al atoms per formula unit (pfu), were synthesized using a rotating multi-anvil press. The single-crystal structures were investigated by X-ray diffraction (XRD) complemented by Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Single-crystal XRD shows that the cell parameters decrease with increasing Al-content. By combining X-ray diffraction and spectroscopy results, we conclude that the Al-poor shy-B crystallizes in the Pnn2 space group with hydrogen in two different general positions. Based on the results of the single crystal X-ray diffraction refinements combined with FTIR spectroscopy, three substitutions mechanisms are proposed: 2 Al$^{3+}$ = Mg$^{2+}$ + Si$^{4+}$; Mg$^{2+}$ ☐$^{Mg2+}$ + 2H$^+$ (☐$^{Mg2+}$ means vacancy in Mg site); ; Si$^{4+}$ = Al$^{3+}$ + H$^+$. Thus, in addition to the two general H positions, hydrogen is incorporated into the hydrous mineral via point defects. The elastic stiffness coefficients were measured for the Al-shy-B with 1.35 pfu Al by Brillouin scattering (BS). Al-bearing shy-B shows lower C$_{11}$, higher C$_{22}$ and similar C$_{33}$ when compared to Al-free shy-B. The elastic anisotropy of Al-bearing shy-B is also higher than that of the Al-free composition. Such different elastic properties are due to the effect of lattice contraction as a whole and the specific chemical substitution mechanism that affect bonds strength. Al-bearing shy-B with lower velocity, higher anisotropy and wider thermodynamic stability can help to understand the low velocity zone and high anisotropy region in the subducted slab located in Tonga.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P02.2
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.2-20150101
|6 EXP:(DE-H253)P-P02.2-20150101
|x 0
700 1 _ |a Speziale, Sergio
|0 P:(DE-H253)PIP1011165
|b 1
700 1 _ |a Glazyrin, Konstantin
|0 P:(DE-H253)PIP1019654
|b 2
700 1 _ |a Wilke, Franziska D. H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Liermann, Hanns-Peter
|0 P:(DE-H253)PIP1007496
|b 4
700 1 _ |a Koch-Mueller, Monika
|0 P:(DE-H253)PIP1016610
|b 5
773 _ _ |a 10.2138/am-2022-7989
|g Vol. 107, no. 5, p. 885 - 895
|0 PERI:(DE-600)2045960-9
|n 5
|p 885 - 895
|t American mineralogist
|v 107
|y 2021
|x 0003-004X
856 4 _ |u https://bib-pubdb1.desy.de/record/465687/files/Admin-Liermann.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/465687/files/Admin-Liermann2.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/465687/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/465687/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/465687/files/Admin-Liermann.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/465687/files/Admin-Liermann2.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/465687/files/Li_et_al_2021.doc
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/465687/files/Li_et_al_2021.docx
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/465687/files/Li_et_al_2021.odt
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/465687/files/Li_et_al_2021.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/465687/files/am-2022-7989.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/465687/files/am-2022-7989.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:465687
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1090582
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1011165
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1019654
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1019654
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1007496
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1007496
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1016610
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AM MINERAL : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21