000465687 001__ 465687
000465687 005__ 20250716150735.0
000465687 0247_ $$2doi$$a10.2138/am-2022-7989
000465687 0247_ $$2ISSN$$a0003-004X
000465687 0247_ $$2ISSN$$a1945-3027
000465687 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-03999
000465687 0247_ $$2altmetric$$aaltmetric:128775291
000465687 0247_ $$2WOS$$aWOS:000790666400010
000465687 0247_ $$2openalex$$aopenalex:W4200303508
000465687 037__ $$aPUBDB-2021-03999
000465687 041__ $$aEnglish
000465687 082__ $$a540
000465687 1001_ $$0P:(DE-H253)PIP1090582$$aLi, Xinyang$$b0$$eCorresponding author
000465687 245__ $$aSynthesis, structure refinement and single-crystal elasticity of Al-bearing superhydrous phase B
000465687 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2021
000465687 3367_ $$2DRIVER$$aarticle
000465687 3367_ $$2DataCite$$aOutput Types/Journal article
000465687 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655454655_3271
000465687 3367_ $$2BibTeX$$aARTICLE
000465687 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000465687 3367_ $$00$$2EndNote$$aJournal Article
000465687 520__ $$aDense hydrous magnesium silicates (DHMSs) with large water content and wide stability fields are a potential H2O reservoir in the deep Earth. Al-bearing superhydrous phase B (shy-B) with a wider stability field than the Al-free counterpart can play an important role in understanding H$_2$O transport in the Earth’s transition zone and topmost lower mantle. In this study, a nominally Al-free and two different Al-bearing shy-B with 0.47(2) and 1.35(4) Al atoms per formula unit (pfu), were synthesized using a rotating multi-anvil press. The single-crystal structures were investigated by X-ray diffraction (XRD) complemented by Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Single-crystal XRD shows that the cell parameters decrease with increasing Al-content. By combining X-ray diffraction and spectroscopy results, we conclude that the Al-poor shy-B crystallizes in the Pnn2 space group with hydrogen in two different general positions. Based on the results of the single crystal X-ray diffraction refinements combined with FTIR spectroscopy, three substitutions mechanisms are proposed: 2 Al$^{3+}$ = Mg$^{2+}$ + Si$^{4+}$; Mg$^{2+}$ ☐$^{Mg2+}$ + 2H$^+$ (☐$^{Mg2+}$ means vacancy in Mg site); ; Si$^{4+}$ = Al$^{3+}$ + H$^+$. Thus, in addition to the two general H positions, hydrogen is incorporated into the hydrous mineral via point defects. The elastic stiffness coefficients were measured for the Al-shy-B with 1.35 pfu Al by Brillouin scattering (BS). Al-bearing shy-B shows lower C$_{11}$, higher C$_{22}$ and similar C$_{33}$ when compared to Al-free shy-B. The elastic anisotropy of Al-bearing shy-B is also higher than that of the Al-free composition. Such different elastic properties are due to the effect of lattice contraction as a whole and the specific chemical substitution mechanism that affect bonds strength. Al-bearing shy-B with lower velocity, higher anisotropy and wider thermodynamic stability can help to understand the low velocity zone and high anisotropy region in the subducted slab located in Tonga.
000465687 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000465687 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000465687 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000465687 693__ $$0EXP:(DE-H253)P-P02.2-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P02.2-20150101$$aPETRA III$$fPETRA Beamline P02.2$$x0
000465687 7001_ $$0P:(DE-H253)PIP1011165$$aSpeziale, Sergio$$b1
000465687 7001_ $$0P:(DE-H253)PIP1019654$$aGlazyrin, Konstantin$$b2
000465687 7001_ $$0P:(DE-HGF)0$$aWilke, Franziska D. H.$$b3
000465687 7001_ $$0P:(DE-H253)PIP1007496$$aLiermann, Hanns-Peter$$b4
000465687 7001_ $$0P:(DE-H253)PIP1016610$$aKoch-Mueller, Monika$$b5
000465687 773__ $$0PERI:(DE-600)2045960-9$$a10.2138/am-2022-7989$$gVol. 107, no. 5, p. 885 - 895$$n5$$p885 - 895$$tAmerican mineralogist$$v107$$x0003-004X$$y2021
000465687 8564_ $$uhttps://bib-pubdb1.desy.de/record/465687/files/Admin-Liermann.pdf
000465687 8564_ $$uhttps://bib-pubdb1.desy.de/record/465687/files/Admin-Liermann2.pdf
000465687 8564_ $$uhttps://bib-pubdb1.desy.de/record/465687/files/HTML-Approval_of_scientific_publication.html
000465687 8564_ $$uhttps://bib-pubdb1.desy.de/record/465687/files/PDF-Approval_of_scientific_publication.pdf
000465687 8564_ $$uhttps://bib-pubdb1.desy.de/record/465687/files/Admin-Liermann.pdf?subformat=pdfa$$xpdfa
000465687 8564_ $$uhttps://bib-pubdb1.desy.de/record/465687/files/Admin-Liermann2.pdf?subformat=pdfa$$xpdfa
000465687 8564_ $$uhttps://bib-pubdb1.desy.de/record/465687/files/Li_et_al_2021.doc$$yOpenAccess
000465687 8564_ $$uhttps://bib-pubdb1.desy.de/record/465687/files/Li_et_al_2021.docx$$yOpenAccess
000465687 8564_ $$uhttps://bib-pubdb1.desy.de/record/465687/files/Li_et_al_2021.odt$$yOpenAccess
000465687 8564_ $$uhttps://bib-pubdb1.desy.de/record/465687/files/Li_et_al_2021.pdf$$yOpenAccess
000465687 8564_ $$uhttps://bib-pubdb1.desy.de/record/465687/files/am-2022-7989.pdf$$yOpenAccess
000465687 8564_ $$uhttps://bib-pubdb1.desy.de/record/465687/files/am-2022-7989.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000465687 8767_ $$d2021-11-03$$eHybrid-OA$$jZahlung erfolgt$$lMasterCard$$zvon RM bezahlt
000465687 8767_ $$d2021-11-18$$eOther$$jZahlung erfolgt$$lMasterCard$$z1,5 % Währungsumrechnung
000465687 909CO $$ooai:bib-pubdb1.desy.de:465687$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000465687 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1090582$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000465687 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011165$$aExternal Institute$$b1$$kExtern
000465687 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019654$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000465687 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1019654$$aEuropean XFEL$$b2$$kXFEL.EU
000465687 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007496$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000465687 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1007496$$aEuropean XFEL$$b4$$kXFEL.EU
000465687 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1016610$$aExternal Institute$$b5$$kExtern
000465687 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMatter – Dynamics, Mechanisms and Control$$x0
000465687 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000465687 9141_ $$y2021
000465687 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000465687 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000465687 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000465687 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000465687 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000465687 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000465687 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000465687 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000465687 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000465687 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAM MINERAL : 2019$$d2021-02-02
000465687 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000465687 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000465687 9201_ $$0I:(DE-H253)FS-PETRA-D-20210408$$kFS-PETRA-D$$lPETRA-D$$x0
000465687 980__ $$ajournal
000465687 980__ $$aVDB
000465687 980__ $$aUNRESTRICTED
000465687 980__ $$aI:(DE-H253)FS-PETRA-D-20210408
000465687 980__ $$aAPC
000465687 9801_ $$aAPC
000465687 9801_ $$aFullTexts