Home > Publications database > Structural order in (As$_{2}$S$_{3}$)x(GeS$_{2}$)$_{1-x}$ glasses > print |
001 | 465571 | ||
005 | 20250724175733.0 | ||
024 | 7 | _ | |a 10.1016/j.jnoncrysol.2021.121075 |2 doi |
024 | 7 | _ | |a 0022-3093 |2 ISSN |
024 | 7 | _ | |a 1873-4812 |2 ISSN |
024 | 7 | _ | |a WOS:000694765600001 |2 WOS |
024 | 7 | _ | |a openalex:W3189170441 |2 openalex |
037 | _ | _ | |a PUBDB-2021-03959 |
041 | _ | _ | |a English |
082 | _ | _ | |a 670 |
100 | 1 | _ | |a Stronski, A. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Structural order in (As$_{2}$S$_{3}$)x(GeS$_{2}$)$_{1-x}$ glasses |
260 | _ | _ | |a Amsterdam [u.a.] |c 2021 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1634290518_12964 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Waiting for fulltext |
520 | _ | _ | |a Structural order in the chalcogenide glasses of (As$_2$S$_3$)$_x$(GeS$_2$)$_{1−x}$ (x = 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0) system is examined in terms of the parameters of local atomic structure as a function of composition x, obtained using high-resolution Raman spectroscopy, high-energy synchrotron X-ray diffraction, extended X-ray absorption fine structure spectroscopy and reverse Monte-Carlo modeling of diffraction data. As a result of the research carried out it is revealed that the structural order of As-rich (x > 0.4) and Ge-rich (x < 0.4) glasses is organized by the main As−S and Ge−S structural motifs based on pyramidal AsS$_3$ and tetrahedral GeS$_4$ units linked by =As−S−As= and triple bondGe−S−Getriple bond structural configurations, respectively; while for the intermediate compound with x = 0.4 the structural network seems to be better homogeneous on the nanoscale due to appearance of triple bondGe−S−As= mixed structural configurations resulting in misbalance between corner-shared and edge-shared tetrahedral units in comparison with their predicted ratio for binary GeS$_2$ glass and the structure of this alloy is similar to the structure of the stoichiometric glass Ge$_{18.2}$As$_{18.2}$S$_{63.6}$ (i.e., x = 0.455) consisting of a coner-shared network of homogeneously mixed GeS$_4$ tetrahedra and AsS$_3$ pyramids. Based on the structural studies, it is also established that the balance between corner-shared and edge-shared GeS$_4$ tetrahedra in the glass backbone of the investigated GeS$_2$-based glasses seems to be responsible for the interconnectivity between two speculative Raman modes at 370 and 430 cm$^{−1}$. Compositional changes in studied glasses result in the evolution of the observed Raman bands. Such dependences of characteristic constituent Raman bands’ intensities showed that (As$_2$S$_3$)$_x$(GeS$_2$)$_{1−x}$ samples contain different nanophases whose concentration is changing along chosen compositional cross-section. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a DORIS III |f DORIS Beamline BW5 |1 EXP:(DE-H253)DORISIII-20150101 |0 EXP:(DE-H253)D-BW5-20150101 |6 EXP:(DE-H253)D-BW5-20150101 |x 0 |
693 | _ | _ | |a DORIS III |f DORIS Beamline X1 |1 EXP:(DE-H253)DORISIII-20150101 |0 EXP:(DE-H253)D-X1-20150101 |6 EXP:(DE-H253)D-X1-20150101 |x 1 |
700 | 1 | _ | |a Kavetskyy, T. |0 P:(DE-H253)PIP1008282 |b 1 |
700 | 1 | _ | |a Revutska, L. |0 P:(DE-HGF)0 |b 2 |e Corresponding author |
700 | 1 | _ | |a Shportko, K. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Popovych, M. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Kaban, I. |0 P:(DE-H253)PIP1007906 |b 5 |
700 | 1 | _ | |a Jóvári, P. |0 P:(DE-H253)PIP1007402 |b 6 |
773 | _ | _ | |a 10.1016/j.jnoncrysol.2021.121075 |g Vol. 572, p. 121075 - |0 PERI:(DE-600)1500501-X |p 121075 |t Journal of non-crystalline solids |v 572 |y 2021 |x 0022-3093 |
909 | C | O | |o oai:bib-pubdb1.desy.de:465571 |p VDB |
910 | 1 | _ | |a V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauki Ave., 03028 Kyiv, Ukraine |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1008282 |
910 | 1 | _ | |a Drohobych Ivan Franko State Pedagogical University, 24 I. Franko Str., 82100 Drohobych, Ukraine |0 I:(DE-HGF)0 |b 1 |6 P:(DE-H253)PIP1008282 |
910 | 1 | _ | |a National Technical University of Ukraine “Ihor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy Ave., 03056 Kyiv, Ukraine |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauki Ave., 03028 Kyiv, Ukraine |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauki Ave., 03028 Kyiv, Ukraine |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1007906 |
910 | 1 | _ | |a IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, 01069 Dresden, Germany |0 I:(DE-HGF)0 |b 5 |6 P:(DE-H253)PIP1007906 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1007402 |
910 | 1 | _ | |a Research Institute for Solid State Physics and Optics, H-1525 Budapest POB 49, Hungary |0 I:(DE-HGF)0 |b 6 |6 P:(DE-H253)PIP1007402 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J NON-CRYST SOLIDS : 2019 |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-27 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|