000465571 001__ 465571
000465571 005__ 20250724175733.0
000465571 0247_ $$2doi$$a10.1016/j.jnoncrysol.2021.121075
000465571 0247_ $$2ISSN$$a0022-3093
000465571 0247_ $$2ISSN$$a1873-4812
000465571 0247_ $$2WOS$$aWOS:000694765600001
000465571 0247_ $$2openalex$$aopenalex:W3189170441
000465571 037__ $$aPUBDB-2021-03959
000465571 041__ $$aEnglish
000465571 082__ $$a670
000465571 1001_ $$0P:(DE-HGF)0$$aStronski, A.$$b0
000465571 245__ $$aStructural order in (As$_{2}$S$_{3}$)x(GeS$_{2}$)$_{1-x}$ glasses
000465571 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000465571 3367_ $$2DRIVER$$aarticle
000465571 3367_ $$2DataCite$$aOutput Types/Journal article
000465571 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634290518_12964
000465571 3367_ $$2BibTeX$$aARTICLE
000465571 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000465571 3367_ $$00$$2EndNote$$aJournal Article
000465571 500__ $$aWaiting for fulltext
000465571 520__ $$aStructural order in the chalcogenide glasses of (As$_2$S$_3$)$_x$(GeS$_2$)$_{1−x}$ (x = 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0) system is examined in terms of the parameters of local atomic structure as a function of composition x, obtained using high-resolution Raman spectroscopy, high-energy synchrotron X-ray diffraction, extended X-ray absorption fine structure spectroscopy and reverse Monte-Carlo modeling of diffraction data. As a result of the research carried out it is revealed that the structural order of As-rich (x > 0.4) and Ge-rich (x < 0.4) glasses is organized by the main As−S and Ge−S structural motifs based on pyramidal AsS$_3$ and tetrahedral GeS$_4$ units linked by =As−S−As= and triple bondGe−S−Getriple bond structural configurations, respectively; while for the intermediate compound with x = 0.4 the structural network seems to be better homogeneous on the nanoscale due to appearance of triple bondGe−S−As= mixed structural configurations resulting in misbalance between corner-shared and edge-shared tetrahedral units in comparison with their predicted ratio for binary GeS$_2$ glass and the structure of this alloy is similar to the structure of the stoichiometric glass Ge$_{18.2}$As$_{18.2}$S$_{63.6}$ (i.e., x = 0.455) consisting of a coner-shared network of homogeneously mixed GeS$_4$ tetrahedra and AsS$_3$ pyramids. Based on the structural studies, it is also established that the balance between corner-shared and edge-shared GeS$_4$ tetrahedra in the glass backbone of the investigated GeS$_2$-based glasses seems to be responsible for the interconnectivity between two speculative Raman modes at 370 and 430 cm$^{−1}$. Compositional changes in studied glasses result in the evolution of the observed Raman bands. Such dependences of characteristic constituent Raman bands’ intensities showed that (As$_2$S$_3$)$_x$(GeS$_2$)$_{1−x}$ samples contain different nanophases whose concentration is changing along chosen compositional cross-section.
000465571 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000465571 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000465571 693__ $$0EXP:(DE-H253)D-BW5-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-BW5-20150101$$aDORIS III$$fDORIS Beamline BW5$$x0
000465571 693__ $$0EXP:(DE-H253)D-X1-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-X1-20150101$$aDORIS III$$fDORIS Beamline X1$$x1
000465571 7001_ $$0P:(DE-H253)PIP1008282$$aKavetskyy, T.$$b1
000465571 7001_ $$0P:(DE-HGF)0$$aRevutska, L.$$b2$$eCorresponding author
000465571 7001_ $$0P:(DE-HGF)0$$aShportko, K.$$b3
000465571 7001_ $$0P:(DE-HGF)0$$aPopovych, M.$$b4
000465571 7001_ $$0P:(DE-H253)PIP1007906$$aKaban, I.$$b5
000465571 7001_ $$0P:(DE-H253)PIP1007402$$aJóvári, P.$$b6
000465571 773__ $$0PERI:(DE-600)1500501-X$$a10.1016/j.jnoncrysol.2021.121075$$gVol. 572, p. 121075 -$$p121075$$tJournal of non-crystalline solids$$v572$$x0022-3093$$y2021
000465571 909CO $$ooai:bib-pubdb1.desy.de:465571$$pVDB
000465571 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauki Ave., 03028 Kyiv, Ukraine$$b0
000465571 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008282$$aExternal Institute$$b1$$kExtern
000465571 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008282$$a Drohobych Ivan Franko State Pedagogical University, 24 I. Franko Str., 82100 Drohobych, Ukraine$$b1
000465571 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National Technical University of Ukraine “Ihor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy Ave., 03056 Kyiv, Ukraine$$b2
000465571 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauki Ave., 03028 Kyiv, Ukraine$$b3
000465571 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauki Ave., 03028 Kyiv, Ukraine$$b4
000465571 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007906$$aExternal Institute$$b5$$kExtern
000465571 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007906$$a IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, 01069 Dresden, Germany$$b5
000465571 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007402$$aExternal Institute$$b6$$kExtern
000465571 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007402$$a Research Institute for Solid State Physics and Optics, H-1525 Budapest POB 49, Hungary$$b6
000465571 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000465571 9141_ $$y2021
000465571 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000465571 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000465571 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000465571 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000465571 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000465571 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000465571 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NON-CRYST SOLIDS : 2019$$d2021-01-27
000465571 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000465571 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000465571 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000465571 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000465571 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000465571 980__ $$ajournal
000465571 980__ $$aVDB
000465571 980__ $$aI:(DE-H253)HAS-User-20120731
000465571 980__ $$aUNRESTRICTED