001 | 465228 | ||
005 | 20250716150713.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevAccelBeams.24.121306 |2 doi |
024 | 7 | _ | |a Sjobak:2020ozm |2 INSPIRETeX |
024 | 7 | _ | |a inspire:1837699 |2 inspire |
024 | 7 | _ | |a 1098-4402 |2 ISSN |
024 | 7 | _ | |a 2469-9888 |2 ISSN |
024 | 7 | _ | |a arXiv:2012.10680 |2 arXiv |
024 | 7 | _ | |a 10.3204/PUBDB-2021-03811 |2 datacite_doi |
024 | 7 | _ | |a WOS:000739627800001 |2 WOS |
024 | 7 | _ | |a altmetric:96467378 |2 altmetric |
024 | 7 | _ | |2 openalex |a openalex:W4200194800 |
037 | _ | _ | |a PUBDB-2021-03811 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
088 | _ | _ | |a arXiv:2012.10680 |2 arXiv |
100 | 1 | _ | |a Sjobak, K. N. |0 K.Sjoebaek.1 |b 0 |e Corresponding author |
245 | _ | _ | |a Strong focusing gradient in a linear active plasma lens |
260 | _ | _ | |a College Park, MD |c 2021 |b American Physical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1641374702_12158 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a arXiv title: Multi-kT/m Focusing Gradient in a Linear Active Plasma Lens8 pages, 6 figures. Submitted to Physical Review Applied |
520 | _ | _ | |a Active plasma lenses are compact devices developed as a promising beam-focusing alternative for charged particle beams, capable of short focal lengths for high-energy beams. We have previously shown that linear magnetic fields with gradients of around 0.3 kT/m can be achieved in argon-filled plasma lenses that preserve beam emittance [C.A. Lindstrøm et al., Phys. Rev. Lett. 121, 194801 (2018)]. Here we show that with argon in a 500 μm diameter capillary, the fields are still linear with a focusing gradient of 3.6 kT/m, which is an order of magnitude higher than the gradients of quadrupole magnets. The current pulses that generate the magnetic field are provided by compact Marx banks, and are highly repeatable. The demonstrated operation with simultaneously high-gradient, linear fields and good repeatability establish active plasma lenses as an ideal device for pulsed particle beam applications requiring very high focusing gradients that are uniform throughout the lens aperture. |
536 | _ | _ | |a 621 - Accelerator Research and Development (POF4-621) |0 G:(DE-HGF)POF4-621 |c POF4-621 |f POF IV |x 0 |
536 | _ | _ | |a VH-VI-503 - Plasma wakefield acceleration of highly relativistic electrons with FLASH (2015_IFV-VH-VI-503) |0 G:(DE-HGF)2015_IFV-VH-VI-503 |c 2015_IFV-VH-VI-503 |x 1 |
536 | _ | _ | |a ZT-0009 - Plasma Accelerators (2018_ZT-0009) |0 G:(DE-HGF)2018_ZT-0009 |c 2018_ZT-0009 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
650 | _ | 7 | |a charged particle: beam |2 INSPIRE |
650 | _ | 7 | |a beam: width |2 INSPIRE |
650 | _ | 7 | |a magnetic field: gradient |2 INSPIRE |
650 | _ | 7 | |a beam emittance |2 INSPIRE |
650 | _ | 7 | |a beam focusing |2 INSPIRE |
650 | _ | 7 | |a beam: pulsed |2 INSPIRE |
650 | _ | 7 | |a argon |2 INSPIRE |
650 | _ | 7 | |a accelerator: plasma |2 INSPIRE |
650 | _ | 7 | |a current: time dependence |2 INSPIRE |
693 | _ | _ | |0 EXP:(DE-MLZ)External-20140101 |5 EXP:(DE-MLZ)External-20140101 |e Measurement at external facility |x 0 |
700 | 1 | _ | |a Adli, E. |0 E.Adli.1 |b 1 |
700 | 1 | _ | |a Corsini, R. |0 R.Corsini.1 |b 2 |
700 | 1 | _ | |a Farabolini, W. |0 W.Farabolini.1 |b 3 |
700 | 1 | _ | |a Boyle, Gregory James |0 P:(DE-H253)PIP1083196 |b 4 |u desy |
700 | 1 | _ | |a Lindstroem, Carl Andreas |0 P:(DE-H253)PIP1086874 |b 5 |u desy |
700 | 1 | _ | |a Meisel, Martin |0 P:(DE-H253)PIP1027730 |b 6 |u desy |
700 | 1 | _ | |a Osterhoff, Jens |0 P:(DE-H253)PIP1012785 |b 7 |u desy |
700 | 1 | _ | |a Röckemann, Jan-Hendrik |0 P:(DE-H253)PIP1016832 |b 8 |
700 | 1 | _ | |a Schaper, Lucas |0 P:(DE-H253)PIP1015071 |b 9 |u desy |
700 | 1 | _ | |a Dyson, A. E. |0 A.E.Dyson.1 |b 10 |
773 | _ | _ | |a 10.1103/PhysRevAccelBeams.24.121306 |g Vol. 24, no. 12, p. 121306 |0 PERI:(DE-600)2844143-6 |n 12 |p 121306 |t Physical review accelerators and beams |v 24 |y 2021 |x 1098-4402 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/465228/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/465228/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/465228/files/Plasmalens_PRAB.pdf |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/465228/files/Sjobak_2021_PhysRevAccelBeams.24.121306.pdf |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/465228/files/Plasmalens_PRAB.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/465228/files/Sjobak_2021_PhysRevAccelBeams.24.121306.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:465228 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1083196 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1086874 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1027730 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1012785 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1016832 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 9 |6 P:(DE-H253)PIP1015071 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1015071 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and Technologies |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-05-04 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV ACCEL BEAMS : 2019 |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-05-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-05-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-05-04 |
920 | 1 | _ | |0 I:(DE-H253)FTX-20210408 |k FTX |l Technol. zukünft. Teilchenph. Experim. |x 0 |
920 | 1 | _ | |0 I:(DE-H253)MPA-20200816 |k MPA |l Plasma Accelerators |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FTX-20210408 |
980 | _ | _ | |a I:(DE-H253)MPA-20200816 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|