001     465228
005     20250716150713.0
024 7 _ |a 10.1103/PhysRevAccelBeams.24.121306
|2 doi
024 7 _ |a Sjobak:2020ozm
|2 INSPIRETeX
024 7 _ |a inspire:1837699
|2 inspire
024 7 _ |a 1098-4402
|2 ISSN
024 7 _ |a 2469-9888
|2 ISSN
024 7 _ |a arXiv:2012.10680
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2021-03811
|2 datacite_doi
024 7 _ |a WOS:000739627800001
|2 WOS
024 7 _ |a altmetric:96467378
|2 altmetric
024 7 _ |2 openalex
|a openalex:W4200194800
037 _ _ |a PUBDB-2021-03811
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2012.10680
|2 arXiv
100 1 _ |a Sjobak, K. N.
|0 K.Sjoebaek.1
|b 0
|e Corresponding author
245 _ _ |a Strong focusing gradient in a linear active plasma lens
260 _ _ |a College Park, MD
|c 2021
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641374702_12158
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a arXiv title: Multi-kT/m Focusing Gradient in a Linear Active Plasma Lens8 pages, 6 figures. Submitted to Physical Review Applied
520 _ _ |a Active plasma lenses are compact devices developed as a promising beam-focusing alternative for charged particle beams, capable of short focal lengths for high-energy beams. We have previously shown that linear magnetic fields with gradients of around 0.3 kT/m can be achieved in argon-filled plasma lenses that preserve beam emittance [C.A. Lindstrøm et al., Phys. Rev. Lett. 121, 194801 (2018)]. Here we show that with argon in a 500 μm diameter capillary, the fields are still linear with a focusing gradient of 3.6 kT/m, which is an order of magnitude higher than the gradients of quadrupole magnets. The current pulses that generate the magnetic field are provided by compact Marx banks, and are highly repeatable. The demonstrated operation with simultaneously high-gradient, linear fields and good repeatability establish active plasma lenses as an ideal device for pulsed particle beam applications requiring very high focusing gradients that are uniform throughout the lens aperture.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a VH-VI-503 - Plasma wakefield acceleration of highly relativistic electrons with FLASH (2015_IFV-VH-VI-503)
|0 G:(DE-HGF)2015_IFV-VH-VI-503
|c 2015_IFV-VH-VI-503
|x 1
536 _ _ |a ZT-0009 - Plasma Accelerators (2018_ZT-0009)
|0 G:(DE-HGF)2018_ZT-0009
|c 2018_ZT-0009
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
650 _ 7 |a charged particle: beam
|2 INSPIRE
650 _ 7 |a beam: width
|2 INSPIRE
650 _ 7 |a magnetic field: gradient
|2 INSPIRE
650 _ 7 |a beam emittance
|2 INSPIRE
650 _ 7 |a beam focusing
|2 INSPIRE
650 _ 7 |a beam: pulsed
|2 INSPIRE
650 _ 7 |a argon
|2 INSPIRE
650 _ 7 |a accelerator: plasma
|2 INSPIRE
650 _ 7 |a current: time dependence
|2 INSPIRE
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Adli, E.
|0 E.Adli.1
|b 1
700 1 _ |a Corsini, R.
|0 R.Corsini.1
|b 2
700 1 _ |a Farabolini, W.
|0 W.Farabolini.1
|b 3
700 1 _ |a Boyle, Gregory James
|0 P:(DE-H253)PIP1083196
|b 4
|u desy
700 1 _ |a Lindstroem, Carl Andreas
|0 P:(DE-H253)PIP1086874
|b 5
|u desy
700 1 _ |a Meisel, Martin
|0 P:(DE-H253)PIP1027730
|b 6
|u desy
700 1 _ |a Osterhoff, Jens
|0 P:(DE-H253)PIP1012785
|b 7
|u desy
700 1 _ |a Röckemann, Jan-Hendrik
|0 P:(DE-H253)PIP1016832
|b 8
700 1 _ |a Schaper, Lucas
|0 P:(DE-H253)PIP1015071
|b 9
|u desy
700 1 _ |a Dyson, A. E.
|0 A.E.Dyson.1
|b 10
773 _ _ |a 10.1103/PhysRevAccelBeams.24.121306
|g Vol. 24, no. 12, p. 121306
|0 PERI:(DE-600)2844143-6
|n 12
|p 121306
|t Physical review accelerators and beams
|v 24
|y 2021
|x 1098-4402
856 4 _ |u https://bib-pubdb1.desy.de/record/465228/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/465228/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/465228/files/Plasmalens_PRAB.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/465228/files/Sjobak_2021_PhysRevAccelBeams.24.121306.pdf
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/465228/files/Plasmalens_PRAB.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/465228/files/Sjobak_2021_PhysRevAccelBeams.24.121306.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:465228
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1083196
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1086874
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1027730
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1012785
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1016832
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1015071
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1015071
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and Technologies
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV ACCEL BEAMS : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 1 _ |0 I:(DE-H253)FTX-20210408
|k FTX
|l Technol. zukünft. Teilchenph. Experim.
|x 0
920 1 _ |0 I:(DE-H253)MPA-20200816
|k MPA
|l Plasma Accelerators
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FTX-20210408
980 _ _ |a I:(DE-H253)MPA-20200816
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21