000465228 001__ 465228 000465228 005__ 20250716150713.0 000465228 0247_ $$2doi$$a10.1103/PhysRevAccelBeams.24.121306 000465228 0247_ $$2INSPIRETeX$$aSjobak:2020ozm 000465228 0247_ $$2inspire$$ainspire:1837699 000465228 0247_ $$2ISSN$$a1098-4402 000465228 0247_ $$2ISSN$$a2469-9888 000465228 0247_ $$2arXiv$$aarXiv:2012.10680 000465228 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-03811 000465228 0247_ $$2WOS$$aWOS:000739627800001 000465228 0247_ $$2altmetric$$aaltmetric:96467378 000465228 0247_ $$2openalex$$aopenalex:W4200194800 000465228 037__ $$aPUBDB-2021-03811 000465228 041__ $$aEnglish 000465228 082__ $$a530 000465228 088__ $$2arXiv$$aarXiv:2012.10680 000465228 1001_ $$0K.Sjoebaek.1$$aSjobak, K. N.$$b0$$eCorresponding author 000465228 245__ $$aStrong focusing gradient in a linear active plasma lens 000465228 260__ $$aCollege Park, MD$$bAmerican Physical Society$$c2021 000465228 3367_ $$2DRIVER$$aarticle 000465228 3367_ $$2DataCite$$aOutput Types/Journal article 000465228 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641374702_12158 000465228 3367_ $$2BibTeX$$aARTICLE 000465228 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000465228 3367_ $$00$$2EndNote$$aJournal Article 000465228 500__ $$aarXiv title: Multi-kT/m Focusing Gradient in a Linear Active Plasma Lens8 pages, 6 figures. Submitted to Physical Review Applied 000465228 520__ $$aActive plasma lenses are compact devices developed as a promising beam-focusing alternative for charged particle beams, capable of short focal lengths for high-energy beams. We have previously shown that linear magnetic fields with gradients of around 0.3 kT/m can be achieved in argon-filled plasma lenses that preserve beam emittance [C.A. Lindstrøm et al., Phys. Rev. Lett. 121, 194801 (2018)]. Here we show that with argon in a 500 μm diameter capillary, the fields are still linear with a focusing gradient of 3.6 kT/m, which is an order of magnitude higher than the gradients of quadrupole magnets. The current pulses that generate the magnetic field are provided by compact Marx banks, and are highly repeatable. The demonstrated operation with simultaneously high-gradient, linear fields and good repeatability establish active plasma lenses as an ideal device for pulsed particle beam applications requiring very high focusing gradients that are uniform throughout the lens aperture. 000465228 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0 000465228 536__ $$0G:(DE-HGF)2015_IFV-VH-VI-503$$aVH-VI-503 - Plasma wakefield acceleration of highly relativistic electrons with FLASH (2015_IFV-VH-VI-503)$$c2015_IFV-VH-VI-503$$x1 000465228 536__ $$0G:(DE-HGF)2018_ZT-0009$$aZT-0009 - Plasma Accelerators (2018_ZT-0009)$$c2018_ZT-0009$$x2 000465228 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000465228 650_7 $$2INSPIRE$$acharged particle: beam 000465228 650_7 $$2INSPIRE$$abeam: width 000465228 650_7 $$2INSPIRE$$amagnetic field: gradient 000465228 650_7 $$2INSPIRE$$abeam emittance 000465228 650_7 $$2INSPIRE$$abeam focusing 000465228 650_7 $$2INSPIRE$$abeam: pulsed 000465228 650_7 $$2INSPIRE$$aargon 000465228 650_7 $$2INSPIRE$$aaccelerator: plasma 000465228 650_7 $$2INSPIRE$$acurrent: time dependence 000465228 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0 000465228 7001_ $$0E.Adli.1$$aAdli, E.$$b1 000465228 7001_ $$0R.Corsini.1$$aCorsini, R.$$b2 000465228 7001_ $$0W.Farabolini.1$$aFarabolini, W.$$b3 000465228 7001_ $$0P:(DE-H253)PIP1083196$$aBoyle, Gregory James$$b4$$udesy 000465228 7001_ $$0P:(DE-H253)PIP1086874$$aLindstroem, Carl Andreas$$b5$$udesy 000465228 7001_ $$0P:(DE-H253)PIP1027730$$aMeisel, Martin$$b6$$udesy 000465228 7001_ $$0P:(DE-H253)PIP1012785$$aOsterhoff, Jens$$b7$$udesy 000465228 7001_ $$0P:(DE-H253)PIP1016832$$aRöckemann, Jan-Hendrik$$b8 000465228 7001_ $$0P:(DE-H253)PIP1015071$$aSchaper, Lucas$$b9$$udesy 000465228 7001_ $$0A.E.Dyson.1$$aDyson, A. E.$$b10 000465228 773__ $$0PERI:(DE-600)2844143-6$$a10.1103/PhysRevAccelBeams.24.121306$$gVol. 24, no. 12, p. 121306$$n12$$p121306$$tPhysical review accelerators and beams$$v24$$x1098-4402$$y2021 000465228 8564_ $$uhttps://bib-pubdb1.desy.de/record/465228/files/HTML-Approval_of_scientific_publication.html 000465228 8564_ $$uhttps://bib-pubdb1.desy.de/record/465228/files/PDF-Approval_of_scientific_publication.pdf 000465228 8564_ $$uhttps://bib-pubdb1.desy.de/record/465228/files/Plasmalens_PRAB.pdf$$yRestricted 000465228 8564_ $$uhttps://bib-pubdb1.desy.de/record/465228/files/Sjobak_2021_PhysRevAccelBeams.24.121306.pdf$$yOpenAccess 000465228 8564_ $$uhttps://bib-pubdb1.desy.de/record/465228/files/Plasmalens_PRAB.pdf?subformat=pdfa$$xpdfa$$yRestricted 000465228 8564_ $$uhttps://bib-pubdb1.desy.de/record/465228/files/Sjobak_2021_PhysRevAccelBeams.24.121306.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000465228 909CO $$ooai:bib-pubdb1.desy.de:465228$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000465228 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083196$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY 000465228 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1086874$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY 000465228 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027730$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY 000465228 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012785$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY 000465228 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1016832$$aExternal Institute$$b8$$kExtern 000465228 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1015071$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY 000465228 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015071$$aExternal Institute$$b9$$kExtern 000465228 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and Technologies$$vAccelerator Research and Development$$x0 000465228 9141_ $$y2021 000465228 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04 000465228 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000465228 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV ACCEL BEAMS : 2019$$d2021-05-04 000465228 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04 000465228 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04 000465228 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04 000465228 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04 000465228 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04 000465228 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000465228 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-05-04 000465228 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04 000465228 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04 000465228 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04 000465228 9201_ $$0I:(DE-H253)FTX-20210408$$kFTX$$lTechnol. zukünft. Teilchenph. Experim.$$x0 000465228 9201_ $$0I:(DE-H253)MPA-20200816$$kMPA$$lPlasma Accelerators$$x1 000465228 980__ $$ajournal 000465228 980__ $$aVDB 000465228 980__ $$aUNRESTRICTED 000465228 980__ $$aI:(DE-H253)FTX-20210408 000465228 980__ $$aI:(DE-H253)MPA-20200816 000465228 9801_ $$aFullTexts