TY  - JOUR
AU  - Lee, Jason Wai Lung
AU  - Tikhonov, Denis
AU  - Chopra, Pragya
AU  - Maclot, Sylvain
AU  - Steber, Amanda
AU  - Gruet, Sebastien Patrice
AU  - Allum, Felix
AU  - Boll, Rebecca
AU  - Cheng, Xuemei
AU  - Duesterer, Stefan
AU  - Erk, Benjamin
AU  - Garg, Diksha
AU  - He, Lanhai
AU  - Heathcote, David
AU  - Johny, Melby
AU  - Kazemi, M. M.
AU  - Koeckert, Hansjochen
AU  - Lahl, Jan
AU  - Lemmens, Alexander
AU  - Loru, Donatella
AU  - Mason, R.
AU  - Mueller, Erland
AU  - Mullins, Terence
AU  - Olshin, Pavel
AU  - Passow, Christopher
AU  - Peschel, Jasper
AU  - Ramm, Daniel
AU  - Rompotis, Dimitrios
AU  - Schirmel, Nora
AU  - Trippel, Sebastian
AU  - Wiese, Joss
AU  - Ziaee, Farzaneh
AU  - Bari, Sadia
AU  - Burt, Michael
AU  - Küpper, Jochen
AU  - Rijs, Anouk
AU  - Rolles, Daniel
AU  - Techert, Simone
AU  - Eng-Johnsson, Per
AU  - Brouard, Mark
AU  - Vallance, C.
AU  - Manschwetus, Bastian
AU  - Schnell, Melanie
TI  - Time-Resolved Relaxation and Fragmentation of Polycyclic Aromatic Hydrocarbons Investigated in the Ultrafast XUV-IR Regime
JO  - Nature Communications
VL  - 12
IS  - 1
SN  - 2041-1723
CY  - [London]
PB  - Nature Publishing Group UK
M1  - PUBDB-2021-03667
SP  - 6107 (1-11)
PY  - 2021
AB  - Polycyclic aromatic hydrocarbons (PAHs) play an important role in interstellar chemistry and are subject to high energy photons that can induce excitation, ionization, and fragmentation. Previous studies have demonstrated electronic relaxation of parent PAH monocations over 10–100 femtoseconds as a result of beyond-Born-Oppenheimer coupling between the electronic and nuclear dynamics. Here, we investigate three PAH molecules: fluorene, phenanthrene, and pyrene, using ultrafast XUV and IR laser pulses. Simultaneous measurements of the ion yields, ion momenta, and electron momenta as a function of laser pulse delay allow a detailed insight into the various molecular processes. We report relaxation times for the electronically excited PAH*, PAH<sup>+</sup>* and PAH<sup>2+</sup>* states, and show the time-dependent conversion between fragmentation pathways. Additionally, using recoil-frame covariance analysis between ion images, we demonstrate that the dissociation of the PAH<sup>2+</sup> ions favors reaction pathways involving two-body breakup and/or loss of neutral fragments totaling an even number of carbon atoms.
LB  - PUB:(DE-HGF)16
C6  - 34671016
UR  - <Go to ISI:>//WOS:000709466400001
DO  - DOI:10.1038/s41467-021-26193-z
UR  - https://bib-pubdb1.desy.de/record/463166
ER  -